36 resultados para thermal structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal Physics of the Atmosphere offers a concise and thorough introduction on how basic thermodynamics naturally leads on to advanced topics in atmospheric physics. The book starts by covering the basics of thermodynamics and its applications in atmospheric science. The later chapters describe major applications, specific to more specialized areas of atmospheric physics, including vertical structure and stability, cloud formation, and radiative processes. The book concludes with a discussion of non-equilibrium thermodynamics as applied to the atmosphere. This book provides a thorough introduction and invaluable grounding for specialised literature on the subject. Introduces a wide range of areas associated with atmospheric physics Starts from basic level thermal physics Ideally suited for readers with a general physics background Self-assessment questions included for each chapter Supplementary website to accompany the book

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sensitivity of the upper ocean thermal balance of an ocean-atmosphere coupled GCM to lateral ocean physics is assessed. Three 40-year simulations are performed using horizontal mixing, isopycnal mixing, and isopycnal mixing plus eddy induced advection. The thermal adjustment of the coupled system is quite different between the simulations, confirming the major role of ocean mixing on the heat balance of climate. The initial adjustment phase of the upper ocean (SST) is used to diagnose the physical mechanisms involved in each parametrisation. When the lateral ocean physics is modified, significant changes of SST are seen, mainly in the southern ocean. A heat budget of the annual mixed layer (defined as the “bowl”) shows that these changes are due to a modified heat transfer between the bowl and the ocean interior. This modified heat intake of the ocean interior is directly due to the modified lateral ocean physics. In isopycnal diffusion, this heat exchange, especially marked at mid-latitudes, is both due to an increased effective surface of diffusion and to the sign of the isopycnal gradients of temperature at the base of the bowl. As this gradient is proportional to the isopycnal gradient of salinity, this confirms the strong role of salinity in the thermal balance of the coupled system. The eddy induced advection also leads to increased exchanges between the bowl and the ocean interior. This is both due to the shape of the bowl and again to the existence of a salinity structure. The lateral ocean physics is shown to be a significant contributor to the exchanges between the diabatic and the adiabatic parts of the ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germin and germin-like proteins (GLPs) are encoded by a family of genes found in all plants. They are part of the cupin superfamily of biochemically diverse proteins, a superfamily that has a conserved tertiary structure, though with limited similarity in primary sequence. The subgroups of GLPs have different enzyme functions that include the two hydrogen peroxide-generating enzymes, oxalate oxidase (OxO) and superoxide dismutase. This review summarizes the sequence and structural details of GLPs and also discusses their evolutionary progression, particularly their amplification in gene number during the evolution of the land plants. In terms of function, the GLPs are known to be differentially expressed during specific periods of plant growth and development, a pattern of evolutionary subfunctionalization. They are also implicated in the response of plants to biotic (viruses, bacteria, mycorrhizae, fungi, insects, nematodes, and parasitic plants) and abiotic (salt, heat/cold, drought, nutrient, and metal) stress. Most detailed data come from studies of fungal pathogenesis in cereals. This involvement with the protection of plants from environmental stress of various types has led to numerous plant breeding studies that have found links between GLPs and QTLs for disease and stress resistance. In addition the OxO enzyme has considerable commercial significance, based principally on its use in the medical diagnosis of oxalate concentration in plasma and urine. Finally, this review provides information on the nutritional importance of these proteins in the human diet, as several members are known to be allergenic, a feature related to their thermal stability and evolutionary connection to the seed storage proteins, also members of the cupin superfamily.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas-phase electron diffraction (GED) data together with results from ab initio molecular orbital calculations (HF and MP2/6-311+G(d,p)) have been used to determine the structure of hexamethyldigermane ((CH3)3Ge-Ge(CH3)3). The equilibrium symmetry is D3d, but the molecule has a very low-frequency, largeamplitude, torsional mode (φCGeGeC) that lowers the thermal average symmetry. The effect of this largeamplitude mode on the interatomic distances was described by a dynamic model which consisted of a set of pseudoconformers spaced at even intervals. The amount of each pseudoconformer was obtained from the ab initio calculations (HF/6-311+G(d,p)). The results for the principal distances (ra) and angles (∠h1) obtained from the combined GED/ab initio (with estimated 1σ uncertainties) are r(Ge-Ge) ) 2.417(2) Å, r(Ge-C) ) 1.956(1) Å, r(C-H) ) 1.097(5) Å, ∠GeGeC ) 110.5(2)°, and ∠GeCH ) 108.8(6)°. Theoretical calculations were performed for the related molecules ((CH3)3Si-Si(CH3)3 and (CH3)3C-C(CH3)3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By combining the results of both x-ray diffraction and neutron total-scattering experiments, we show that Ni(CN)(2) exhibits long-range structural order only in two dimensions, with no true periodicity perpendicular to its gridlike layers. Reverse Monte Carlo analysis gives an experimental distinction between M-C and M-N bond lengths in a homometallic cyanide framework and identifies the vibrational modes responsible for anomalous positive and negative thermal expansion in the title compound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of gold cyanide, AuCN, has been determined at 10 and 300 K using total neutron diffraction. The structure consists of infinite -Au-(CN)-Au-(CN)-Au-(CN)- linear chains, hexagonally packed, with the gold atoms in sheets. The Au-C and Au-N bond lengths are found to be identical, with d(Au-C/N) = 1.9703(5) Angstrom at 300 K. This work supersedes a previous study, by others, which used Rietveld analysis of neutron Bragg diffraction in isolation, and found these bonds to have significantly different lengths (Deltad = 0.24 Angstrom) at 300 K. The total correlation function, T(r), at 10 and 300 K, has been modeled using information derived from total diffraction. The broadening of inter- and intrachain correlations differs markedly due to random displacements of the chains in the direction of the chain axes. This is a consequence of the relatively weak bonding between the chains. An explanation for the negative thermal expansion in the c-direction, which occurs between 10 and 300 K, is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and thermal properties of polymers containing dibenzo-18-crown-6 ether units in the main chain linked to an aliphatic spacer of different lengths (C10-C14) is reported. X-ray diffraction patterns of all the studied samples exhibit a peak in the medium angle region, revealing the existence of a lamellar structure. Simultaneous calorimetry and small, medium (SAXS-MAXS) and wide (WAXS) X-ray measurements during cooling and subsequent heating of the samples reveal that a layer phase is formed upon cooling. In the case of the homopolymers, this phase is almost simultaneously accompanied by the appearance of some reflections in the wide angle region as an indication of lateral crystallization. However, by copolymerization, the formation of the layer phase is decoupled from lateral crystallization, being stable in a wide temperature region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of high pressure (to 800 MPa) applied at different temperatures (20-70 degreesC) for 20 min on beef post-rigor longissimus dorsi texture were studied. Texture profile analysis showed that when heated at ambient pressure there was the expected increase in hardness with increasing temperature and when pressure was applied at room temperature there was again the expected increase in hardness with increasing pressure. Similar results to those found at ambient temperature were found when pressure was applied at 40 degreesC. However, at higher temperatures, 60 and 70 degreesC it was found that pressures of 200 MPa caused large and significant decreases in hardness. The results found for hardness were mirrored by those for gumminess and chewiness. To further understand the changes in texture observed, intact beef longissimus dorsi samples and extracted myofibrils were both subjected to differential scanning calorimetry after being subjected to the same pressure/temperature regimes. As expected collagen was reasonably inert to pressure and only at temperatures of 60-70 degreesC was it denatured/unfolded. However, myosin was relatively easily unfolded by both pressure and temperature and when pressure denatured a new and modified structure was formed of low thermal stability. Although this new structure had low thermal stability at ambient pressure it still formed in both the meat and myofibrils when pressure was applied at 60 degreesC. It seems unlikely that structurally induced changes can be a major cause of the significant loss of hardness observed when beef is treated at high temperature (60-70 degreesC) and 200 MPa and it is suggested that accelerated proteolysis under these conditions is the major cause. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behaviour of the lattice parameters of HTCuCN (high-temperature form), AgCN and AuCN have been investigated as a function of temperature over the temperature range 90–490 K. All materials show one-dimensional negative thermal expansion (NTE) along the ––(M––CN)–– chain direction c (ac(HT-CuCN) ¼32.1 10–6 K1, ac(AgCN)¼23.910–6 K1 and ac(AuCN) ¼9.3106 K1 over the temperature range 90–490 K). The origin of this behaviour has been studied using RMC modelling of Bragg and total neutron diffraction data from AgCN and AuCN at 10 and 300 K. These analyses yield details of the local motions within the chains responsible for NTE. The low-temperature form of CuCN, LT-CuCN, has been studied using single-crystal X-ray diffraction. In this form of CuCN, wavelike distortions of the ––(Cu––CN)–– chains occur in the static structure, which are reminiscent of the motions seen in the RMC modelling of AgCN and AuCN, which are responsible for the NTE behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coatings and filters for spaceflight far-infrared components require a robust, non-absorptive low-index thin film material to contrast with the typically higher refractive index infrared materials. Barium fluoride is one such material for the 10 to 20µm wavelength infrared region, however its optical and mechanical properties vary depending on the process used to deposit it in thin film form. Thin films of dielectric produced by thermal evaporation are well documented as having a lower packing density and refractive index than bulk material. The porous and columnar micro structure of these films causes possible deterioration of their performance in varied environmental conditions, primarily because of the moisture absorption. Dielectric thin films produced by the more novel technique of ion-beam sputtering are denser with no columnar micro structure and have a packing density and refractive index similar to the bulk material. A comparative study of Barium Fluoride (BaF2) thin films made by conventional thermal evaporation and ion-beam sputtering is reported. Films of similar thicknesses are deposited on Cadmium Telluride and Germanium substrates. The optical and mechanical properties of these films are then examined. The refractive index n of the films is obtained from applying the modified Manifacier's evvelope method to the spectral measurements made on a Perkin Elmer 580 spectrophotometer. An estimate is also made of the value of the extinction coefficient k in the infrared wavelength transparent region of the thin film. In order to study the mechanical properties of the BaF2 films, and evaluate their usefulness in spaceflight infrared filters and coatings, the thin film samples are subjected to MIL-F-48616 environmental tests. Comparisons are made of their performance under these tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zn(CN)2 and Ni(CN)2 are known for exhibiting anomalous thermal expansion over a wide temperature range. The volume thermal expansion coefficient for the cubic, three dimensionally connected material, Zn(CN)2, is negative (alpha(V) = −51  10(-6) K-1) while for Ni(CN)2, a tetragonal material, the thermal expansion coefficient is negative in the two dimensionally connected sheets (alpha(a) = −7  10(-6) K-1), but the overall thermal expansion coefficient is positive (alpha(V) = 48  10(-6) K-1). We have measured the temperature dependence of phonon spectra in these compounds and analyzed them using ab initio calculations. The spectra of the two compounds show large differences that cannot be explained by simple mass renormalization of the modes involving Zn (65.38 amu) and Ni (58.69 amu) atoms. This reflects the fact that the structure and bonding are quite different in the two compounds. The calculated pressure dependence of the phonon modes and of the thermal expansion coefficient, alpha(V), are used to understand the anomalous behavior in these compounds. Our ab initio calculations indicate that phonon modes of energy approx. 2 meV are major contributors to negative thermal expansion (NTE) in both the compounds. The low-energy modes of approx.8 and 13 meV in Zn(CN)2 also contribute significantly to the NTE in Zn(CN)2 and Ni(CN)2, respectively. The measured temperature dependence of the phonon spectra has been used to estimate the total anharmonicity of both compounds. For Zn(CN)2, the temperature-dependent measurements (total anharmonicity), along with our previously reported pressure dependence of the phonon spectra (quasiharmonic), is used to separate the explicit temperature effect at constant volume (intrinsic anharmonicity).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isotropic crystallographic model of the structure of xylanase I from Thermoascus aurantiacus (TAXI) has now been refined anisotropically at 1.14 Å resolution to a standard residual of R = 11.1% for all data. TAXI is amongst the five largest proteins deposited in the Protein Data Bank to have been refined with anisotropic displacement parameters (ADPs) at this level of resolution. The anisotropy analysis revealed a more isotropic distribution of anisotropy than usually observed previously. Adding ADPs resulted in high-quality electron-density maps which revealed discrepancies from the previously suggested primary sequences for this enzyme. Side-chain conformational disorder was modelled for 16 residues, including Trp275, a bulky residue at the active site. An unrestrained refinement was consistent with the protonation of the catalytic acid/base glutamate and the deprotonation of the nucleophile glutamate, as required for catalysis. The thermal stability of TAXI is reinterpreted in the light of the new refined model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase behavior of grafted d-polystyrene-block-poly(methyl methacrylate) diblock copolymer films is examined, with particular focus on the effect of solvent and annealing time. It was observed that the films undergo a two-step transformation from an initially disordered state, through an ordered metastable state, to the final equilibrium configuration. It was also found that altering the solvent used to wash the films, or complete removal of the solvent prior to thermal annealing using supercritical CO2, could influence the structure of the films in the metastable state, though the final equilibrium state was unaffected. To aid in the understanding to these experimental results, a series of self-consistent field theory calculations were done on a model diblock copolymer brush containing solvent. Of the different models examined, those which contained a solvent selective for the grafted polymer block most accurately matched the observed experimental behavior. We hypothesize that the structure of the films in the metastable state results from solvent enrichment of the film near the film/substrate interface in the case of films washed with solvent or faster relaxation of the nongrafted block for supercritical CO2 treated (solvent free) films. The persistence of the metastable structures was attributed to the slow reorganization of the polymer chains in the absence of solvent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by the importance to weather and climate of the Indo-Pacific seas, we present a new calibration of the Visible Infrared Spin-Scan Radiometer (VISSR) on the geostationary meteorological satellite, GMS-5. VISSR imagery has significant potential for exploring the dynamics of the ocean and air–sea interactions in this poorly characterized region, by virtue of the VISSR's surface temperature retrieval capability and hourly sampling. However, the calibration of the thermal imagery supplied by the Japanese Meteorological Agency (JMA) is inconsistent with the spectral characteristics of the channels, and published details of the JMA calibration procedure are scant. We use the well-characterized Along-Track Scanning Radiometer 2 (ATSR-2) as a reference, and determine calibration corrections for GMS-5 VISSR. We obtain more credible VISSR brightness temperatures and demonstrate sea surface temperature (SST) retrieval that validates well against in situ measurements (bias ∼0.3 and scatter ∼0.4 K). Comparison with a widely used sea surface temperature analysis shows that the GMS-5 VISSR SST fields capture important spatial structure, absent in the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate in detail the initial susceptibility, magnetization curves, and microstructure of ferrofluids in various concentration and particle dipole moment ranges by means of molecular dynamics simulations. We use the Ewald summation for the long-range dipolar interactions, take explicitly into account the translational and rotational degrees of freedom, coupled to a Langevin thermostat. When the dipolar interaction energy is comparable with the thermal energy, the simulation results on the magnetization properties agree with the theoretical predictions very well. For stronger dipolar couplings, however, we find systematic deviations from the theoretical curves. We analyze in detail the observed microstructure of the fluids under different conditions. The formation of clusters is found to enhance the magnetization at weak fields and thus leads to a larger initial susceptibility. The influence of the particle aggregation is isolated by studying ferro-solids, which consist of magnetic dipoles frozen in at random locations but which are free to rotate. Due to the artificial suppression of clusters in ferrosolids the observed susceptibility is considerably lowered when compared to ferrofluids.