32 resultados para terrain avoidance
Resumo:
Scintillometry is an established technique for determining large areal average sensible heat fluxes. The scintillometer measurement is related to sensible heat flux via Monin–Obukhov similarity theory, which was developed for ideal homogeneous land surfaces. In this study it is shown that judicious application of scintillometry over heterogeneous mixed agriculture on undulating topography yields valid results when compared to eddy covariance (EC). A large aperture scintillometer (LAS) over a 2.4 km path was compared with four EC stations measuring sensible (H) and latent (LvE) heat fluxes over different vegetation (cereals and grass) which when aggregated were representative of the LAS source area. The partitioning of available energy into H and LvE varied strongly for different vegetation types, with H varying by a factor of three between senesced winter wheat and grass pasture. The LAS derived H agrees (one-to-one within the experimental uncertainty) with H aggregated from EC with a high coefficient of determination of 0.94. Chronological analysis shows individual fields may have a varying contribution to the areal average sensible heat flux on short (weekly) time scales due to phenological development and changing soil moisture conditions. Using spatially aggregated measurements of net radiation and soil heat flux with H from the LAS, the areal averaged latent heat flux (LvELAS) was calculated as the residual of the surface energy balance. The regression of LvELAS against aggregated LvE from the EC stations has a slope of 0.94, close to ideal, and demonstrates that this is an accurate method for the landscape-scale estimation of evaporation over heterogeneous complex topography.
Resumo:
Forest canopies are important components of the terrestrial carbon budget, which has motivated a worldwide effort, FLUXNET, to measure CO2 exchange between forests and the atmosphere. These measurements are difficult to interpret and to scale up to estimate exchange across a landscape. Here we review the effects of complex terrain on the mean flow, turbulence, and scalar exchange in canopy flows, as exemplified by adjustment to forest edges and hills, including the effects of stable stratification. We focus on the fundamental fluid mechanics, in which developments in theory, measurements, and modeling, particularly through large-eddy simulation, are identifying important processes and providing scaling arguments. These developments set the stage for the development of predictive models that can be used in combination with measurements to estimate exchange at the landscape scale.
Resumo:
Synoptic climatology relates the atmospheric circulation with the surface environment. The aim of this study is to examine the variability of the surface meteorological patterns, which are developing under different synoptic scale categories over a suburban area with complex topography. Multivariate Data Analysis techniques were performed to a data set with surface meteorological elements. Three principal components related to the thermodynamic status of the surface environment and the two components of the wind speed were found. The variability of the surface flows was related with atmospheric circulation categories by applying Correspondence Analysis. Similar surface thermodynamic fields develop under cyclonic categories, which are contrasted with the anti-cyclonic category. A strong, steady wind flow characterized by high shear values develops under the cyclonic Closed Low and the anticyclonic H–L categories, in contrast to the variable weak flow under the anticyclonic Open Anticyclone category.
Resumo:
The All-Weather Volcano Topography Imaging Sensor remote sensing instrument is a custom-built millimeter-wave (MMW) sensor that has been developed as a practical field tool for remote sensing of volcanic terrain at active lava domes. The portable instrument combines active and passive MMW measurements to record topographic and thermal data in almost all weather conditions from ground-based survey points. We describe how the instrument is deployed in the field, the quality of the primary ranging and radiometric measurements, and the postprocessing techniques used to derive the geophysical products of the target terrain, surface temperature, and reflectivity. By comparison of changing topography, we estimate the volume change and the lava extrusion rate. Validation of the MMW radiometry is also presented by quantitative comparison with coincident infrared thermal imagery.
Resumo:
This letter presents an effective approach for selection of appropriate terrain modeling methods in forming a digital elevation model (DEM). This approach achieves a balance between modeling accuracy and modeling speed. A terrain complexity index is defined to represent a terrain's complexity. A support vector machine (SVM) classifies terrain surfaces into either complex or moderate based on this index associated with the terrain elevation range. The classification result recommends a terrain modeling method for a given data set in accordance with its required modeling accuracy. Sample terrain data from the lunar surface are used in constructing an experimental data set. The results have shown that the terrain complexity index properly reflects the terrain complexity, and the SVM classifier derived from both the terrain complexity index and the terrain elevation range is more effective and generic than that designed from either the terrain complexity index or the terrain elevation range only. The statistical results have shown that the average classification accuracy of SVMs is about 84.3% ± 0.9% for terrain types (complex or moderate). For various ratios of complex and moderate terrain types in a selected data set, the DEM modeling speed increases up to 19.5% with given DEM accuracy.
Resumo:
The authors examined avoidance personal goals as concurrent (Study 1) and longitudinal (Study 2) predictors of multiple aspects of well-being in the United States and Japan. In both studies, participants adopted more avoidance personal goals in Japan relative to the United States. Both studies also demonstrated that avoidance personal goals were significant negative predictors of the most relevant aspects of well-being in each culture. Specifically, avoidance personal goals were negative predictors of intrapersonal and eudaimonic well-being in the United States and were negative predictors of interpersonal and eudaimonic well-being in Japan. The findings clarify and extend puzzling findings from prior empirical work in this area, and raise provocative possibilities about the nature of avoidance goal pursuit.
Resumo:
We conducted 2 longitudinal meditational studies to test an integrative model of goals, stress and coping, and well‐being. Study 1 documented avoidance personal goals as an antecedent of life stressors and life stressors as a partial mediator of the relation between avoidance goals and longitudinal change in subjective well‐being (SWB). Study 2 fully replicated Study 1 and likewise validated avoidance goals as an antecedent of avoidance coping and avoidance coping as a partial mediator of the relation between avoidance goals and longitudinal change in SWB. It also showed that avoidance coping partially mediates the link between avoidance goals and life stressors and validated a sequential meditational model involving both avoidance coping and life stressors. The aforementioned results held when controlling for social desirability, basic traits, and general motivational dispositions. The findings are discussed with regard to the integration of various strands of research on self‐regulation. (PsycINFO Database Record (c) 2012 APA, all rights reserved)(journal abstract)
Resumo:
In the present research, we conducted 4 studies designed to examine the hypothesis that perceived competence moderates the relation between performance-approach and performance-avoidance goals. Each study yielded supportive data, indicating that the correlation between the 2 goals is lower when perceived competence is high. This pattern was observed at the between- and within-subject level of analysis, with correlational and experimental methods and using both standard and novel achievement goal assessments, multiple operationalizations of perceived competence, and several different types of focal tasks. The findings from this research contribute to the achievement goal literature on theoretical, applied, and methodological fronts and highlight the importance of and need for additional empirical work in this area. (PsycINFO Database Record (c) 2012 APA, all rights reserved)(journal abstract)
Resumo:
In the literature on achievement goals, performance-approach goals (striving to do better than others) and performance-avoidance goals (striving to avoid doing worse than others) tend to exhibit a moderate to high correlation, raising questions about whether the 2 goals represent distinct constructs. In the current article, we sought to examine the separability of these 2 goals using a broad factor-analytic approach that attended to issues that have been overlooked or underexamined in prior research. Five studies provided strong evidence for the separation of these 2 goal constructs: Separation was observed not only with exploratory factor analysis across different age groups and countries (Studies 1a and 1b) but also with change analysis (Study 2), ipsative factor analysis (Study 3), within-person analysis (Study 4), and behavioral genetics analysis (Study 5). We conclude by discussing the implications of the present research for the achievement goal literature, as well as the psychological literature in general.
Resumo:
In recent years, ZigBee has been proven to be an excellent solution to create scalable and flexible home automation networks. In a home automation network, consumer devices typically collect data from a home monitoring environment and then transmit the data to an end user through multi-hop communication without the need for any human intervention. However, due to the presence of typical obstacles in a home environment, error-free reception may not be possible, particularly for power constrained devices. A mobile sink based data transmission scheme can be one solution but obstacles create significant complexities for the sink movement path determination process. Therefore, an obstacle avoidance data routing scheme is of vital importance to the design of an efficient home automation system. This paper presents a mobile sink based obstacle avoidance routing scheme for a home monitoring system. The mobile sink collects data by traversing through the obstacle avoidance path. Through ZigBee based hardware implementation and verification, the proposed scheme successfully transmits data through the obstacle avoidance path to improve network performance in terms of life span, energy consumption and reliability. The application of this work can be applied to a wide range of intelligent pervasive consumer products and services including robotic vacuum cleaners and personal security robots1.
Resumo:
In this study, the crosswind (wind component perpendicular to a path, U⊥) is measured by a scintillometer and estimated with Doppler lidar above the urban environment of Helsinki, Finland, for 15 days. The scintillometer allows acquisition of a path-averaged value of U⊥ (U⊥), while the lidar allows acquisition of path-resolved U⊥ (U⊥ (x), where x is the position along the path). The goal of this study is to evaluate the performance of scintillometer U⊥ estimates for conditions under which U⊥ (x) is variable. Two methods are applied to estimate U⊥ from the scintillometer signal: the cumulative-spectrum method (relies on scintillation spectra) and the look-up-table method (relies on time-lagged correlation functions). The values of U⊥ of both methods compare well with the lidar estimates, with root-mean-square deviations of 0.71 and 0.73 m s−1. This indicates that, given the data treatment applied in this study, both measurement technologies are able to obtain estimates of U⊥ in the complex urban environment. The detailed investigation of four cases indicates that the cumulative-spectrum method is less susceptible to a variable U⊥ (x) than the look-up-table method. However, the look-up-table method can be adjusted to improve its capabilities for estimating U⊥ under conditions under for which U⊥ (x) is variable.