37 resultados para tandem mass spectrometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data are presented for a pH-adjustable liquid UV-matrix-assisted laser desorption ionization (MALDI) matrix for mass spectrometry analysis. The liquid matrix system possesses high analytical sensitivity within the same order of magnitude as that achievable by the commonly used solid UV-MALDI matrices such as 2,5-dihydroxybenzoic acid but with improved spot homogeneity and reproducibility. The pH of the matrix has been adjusted by the addition of up to 0.35% trifluoroacetic acid and up to 200 mM ammonium bicarbonate, achieving an on-target pH range of 3.5-8.6. Alteration of the pH does not seem to affect the overall sample signal intensity or signal-to-noise ratio achievable, nor does it affect the individual peptide ion signals from a mixture of peptides with varying isoelectric points (p1). In addition, the pH adjustment has allowed for the performance of a tryptic digest within the diluted pH-optimized liquid matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye (TM) and analysed by two-dimensional difference gel. electrophoresis. Gel images analysed off-line, using the DeCyder (TM) image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Our objective was to test the performance of CA125 in classifying serum samples from a cohort of malignant and benign ovarian cancers and age-matched healthy controls and to assess whether combining information from matrix-assisted laser desorption/ionization (MALDI) time-of-flight profiling could improve diagnostic performance. Materials and Methods: Serum samples from women with ovarian neoplasms and healthy volunteers were subjected to CA125 assay and MALDI time-of-flight mass spectrometry (MS) profiling. Models were built from training data sets using discriminatory MALDI MS peaks in combination with CA125 values and tested their ability to classify blinded test samples. These were compared with models using CA125 threshold levels from 193 patients with ovarian cancer, 290 with benign neoplasm, and 2236 postmenopausal healthy controls. Results: Using a CA125 cutoff of 30 U/mL, an overall sensitivity of 94.8% (96.6% specificity) was obtained when comparing malignancies versus healthy postmenopausal controls, whereas a cutoff of 65 U/mL provided a sensitivity of 83.9% (99.6% specificity). High classification accuracies were obtained for early-stage cancers (93.5% sensitivity). Reasons for high accuracies include recruitment bias, restriction to postmenopausal women, and inclusion of only primary invasive epithelial ovarian cancer cases. The combination of MS profiling information with CA125 did not significantly improve the specificity/accuracy compared with classifications on the basis of CA125 alone. Conclusions: We report unexpectedly good performance of serum CA125 using threshold classification in discriminating healthy controls and women with benign masses from those with invasive ovarian cancer. This highlights the dependence of diagnostic tests on the characteristics of the study population and the crucial need for authors to provide sufficient relevant details to allow comparison. Our study also shows that MS profiling information adds little to diagnostic accuracy. This finding is in contrast with other reports and shows the limitations of serum MS profiling for biomarker discovery and as a diagnostic tool

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peak picking is an early key step in MS data analysis. We compare three commonly used approaches to peak picking and discuss their merits by means of statistical analysis. Methods investigated encompass signal-to-noise ratio, continuous wavelet transform, and a correlation-based approach using a Gaussian template. Functionality of the three methods is illustrated and discussed in a practical context using a mass spectral data set created with MALDI-TOF technology. Sensitivity and specificity are investigated using a manually defined reference set of peaks. As an additional criterion, the robustness of the three methods is assessed by a perturbation analysis and illustrated using ROC curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of superdihydroxybenzoic acid as the matrix enabled the analysis of highly complex mixtures of proanthocyanidins from sainfoin (Onobrychis viciifolia) by MALDI-TOF mass spectrometry. Proanthocyanidins contained predominantly B-type homopolymers and heteropolymers up to 12- mers (3400 Da). Use of another matrix, 2,6-dihydroxyacetophenone, revealed the presence of A-type glycosylated dimers. In addition, we report here how a comparison of the isotopic adduct patterns, which resulted from Li and Na salts as MALDI matrix additives, could be used to confirm the presence of A-type linkages in complex proanthocyanidin mixtures. Preliminary evidence suggested the presence of A-type dimers in glycosylated prodelphinidins and in tetrameric procyanidins and prodelphinidins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proteome of Salmonella enterica serovar Typhimurium was characterized by 2-dimensional HPLC mass spectrometry to provide a platform for subsequent proteomic investigations of low level multiple antibiotic resistance (MAR). Bacteria (2.15 +/- 0.23 x 10(10) cfu; mean +/- s.d.) were harvested from liquid culture and proteins differentially fractionated, on the basis of solubility, into preparations representative of the cytosol, cell envelope and outer membrane proteins (OMPs). These preparations were digested by treatment with trypsin and peptides separated into fractions (n = 20) by strong cation exchange chromatography (SCX). Tryptic peptides in each SCX fraction were further separated by reversed-phase chromatography and detected by mass spectrometry. Peptides were assigned to proteins and consensus rank listings compiled using SEQUEST. A total of 816 +/- 11 individual proteins were identified which included 371 +/- 33, 565 +/- 15 and 262 +/- 5 from the cytosolic, cell envelope and OMP preparations, respectively. A significant correlation was observed (r(2) = 0.62 +/- 0.10; P < 0.0001) between consensus rank position for duplicate cell preparations and an average of 74 +/- 5% of proteins were common to both replicates. A total of 34 outer membrane proteins were detected, 20 of these from the OMP preparation. A range of proteins (n = 20) previously associated with the mar locus in E. coli were also found including the key MAR effectors AcrA, TolC and OmpF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucosinolates are multi-functional plant secondary metabolites which play a vital role in plant defence and are, as dietary compounds, important to human health and livestock well-being. Knowledge of the tissue-specific regulation of their biosynthesis and accumulation is essential for plant breeding programs. Here, we report that in Arabidopsis thaliana, glucosinolates are accumulated differentially in specific cells of reproductive organs. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), distribution patterns of three selected compounds, 4-methylsulfinylbutyl (glucoraphanin), indol-3-ylmethyl (glucobrassicin), and 4-benzoyloxybutyl glucosinolates, were mapped in the tissues of whole flower buds, sepals and siliques. The results show that tissue localization patterns of aliphatic glucosinolate glucoraphanin and 4-benzoyloxybutyl glucosinolate were similar, but indole glucosinolate glucobrassicin had different localisation, indicating a possible difference in function. The high resolution images obtained by a complementary approach, cryo-SEM Energy Dispersive X-ray analysis (cryo-SEM-EDX), confirmed increased concentration of sulphur in areas with elevated amounts of glucosinolates, and allowed identifying the cell types implicated in accumulation of glucosinolates. High concentration of sulphur was found in S-cells adjacent to the phloem in pedicels and siliques, indicating the presence of glucosinolates. Moreover, both MALDI MSI and cryo-SEM-EDX analyses indicated accumulation of glucosinolates in cells on the outer surface of the sepals, suggesting that a layer of glucosinolate-accumulating epidermal cells protects the whole of the developing flower, in addition to the S-cells, which protect the phloem. This research demonstrates the high potential of MALDI MSI for understanding the cell-specific compartmentation of plant metabolites and its regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world’s population will reach 9–12 billion people demanding a food production increase of 34–70% (FAO, 2009) from today’s food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) is a highly versatile and sensitive analytical technique, which is known for its soft ionisation of biomolecules such as peptides and proteins. Generally, MALDI MS analysis requires little sample preparation, and in some cases like MS profiling it can be automated through the use of robotic liquid-handling systems. For more than a decade now, MALDI MS has been extensively utilised in the search for biomarkers that could aid clinicians in diagnosis, prognosis, and treatment decision making. This review examines the various MALDI-based MS techniques like MS imaging, MS profiling and proteomics in-depth analysis where MALDI MS follows fractionation and separation methods such as gel electrophoresis, and how these have contributed to prostate cancer biomarker research. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 70kDa ribosomal protein S6 kinase 1 (S6K1) plays important roles in the regulation of protein synthesis, cell growth and metabolism. S6K1 is activated by the phosphorylation of multiple serine and threonine residues in response to stimulation by a variety of growth factors and cytokines. In addition to phosphorylation, we have recently shown that S6K1 is also targeted by lysine acetylation. Here, using tandem mass spectrometry we have mapped acetylation of S6K1 to lysine 516, a site close to the C-terminus of the kinase that is highly conserved amongst vertebrate S6K1 orthologues. Using acetyl-specific K516 antibodies, we show that acetylation of endogenous S6K1 at this site is potently induced upon growth factor stimulation. Although S6K1 acetylation and phosphorylation are both induced by growth factor stimulation, these events appear to be functionally independent. Indeed, experiments using inhibitors of S6K1 activation and exposure of cells to various stresses indicate that S6K1 acetylation can occur in the absence of phosphorylation and vice versa. We propose that K516 acetylation may serve to modulate important kinase-independent functions of S6K1 in response to growth factor signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.