25 resultados para taiwan
Resumo:
This paper explores a new technique to calculate and plot the distribution of instantaneous transmit envelope power of OFDMA and SC-FDMA signals from the equation of Probability Density Function (PDF) solved numerically. The Complementary Cumulative Distribution Function (CCDF) of Instantaneous Power to Average Power Ratio (IPAPR) is computed from the structure of the transmit system matrix. This helps intuitively understand the distribution of output signal power if the structure of the transmit system matrix and the constellation used are known. The distribution obtained for OFDMA signal matches complex normal distribution. The results indicate why the CCDF of IPAPR in case of SC-FDMA is better than OFDMA for a given constellation. Finally, with this method it is shown again that cyclic prefixed DS-CDMA system is one case with optimum IPAPR. The insight that this technique provides may be useful in designing area optimised digital and power efficient analogue modules.
Resumo:
Foundation construction process has been an important key point in a successful construction engineering. The frequency of using diaphragm wall construction method among many deep excavation construction methods in Taiwan is the highest in the world. The traditional view of managing diaphragm wall unit in the sequencing of construction activities is to establish each phase of the sequencing of construction activities by heuristics. However, it conflicts final phase of engineering construction with unit construction and effects planning construction time. In order to avoid this kind of situation, we use management of science in the study of diaphragm wall unit construction to formulate multi-objective combinational optimization problem. Because the characteristic (belong to NP-Complete problem) of problem mathematic model is multi-objective and combining explosive, it is advised that using the 2-type Self-Learning Neural Network (SLNN) to solve the N=12, 24, 36 of diaphragm wall unit in the sequencing of construction activities program problem. In order to compare the liability of the results, this study will use random researching method in comparison with the SLNN. It is found that the testing result of SLNN is superior to random researching method in whether solution-quality or Solving-efficiency.
Resumo:
We have developed a new Bayesian approach to retrieve oceanic rain rate from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), with an emphasis on typhoon cases in the West Pacific. Retrieved rain rates are validated with measurements of rain gauges located on Japanese islands. To demonstrate improvement, retrievals are also compared with those from the TRMM/Precipitation Radar (PR), the Goddard Profiling Algorithm (GPROF), and a multi-channel linear regression statistical method (MLRS). We have found that qualitatively, all methods retrieved similar horizontal distributions in terms of locations of eyes and rain bands of typhoons. Quantitatively, our new Bayesian retrievals have the best linearity and the smallest root mean square (RMS) error against rain gauge data for 16 typhoon overpasses in 2004. The correlation coefficient and RMS of our retrievals are 0.95 and ~2 mm hr-1, respectively. In particular, at heavy rain rates, our Bayesian retrievals outperform those retrieved from GPROF and MLRS. Overall, the new Bayesian approach accurately retrieves surface rain rate for typhoon cases. Accurate rain rate estimates from this method can be assimilated in models to improve forecast and prevent potential damages in Taiwan during typhoon seasons.
Resumo:
This paper examines the evidence for a day-of-the-week effect in five Southeast Asian stock markets: South Korea, Malaysia, the Philippines, Taiwan and Thailand. Findings indicate significant seasonality for three of the five markets. Market risk, proxied by the return on the FTA World Price Index, is not sufficient to explain this calendar anomaly. Although an extension of the risk-return equation to incorporate interactive seasonal dummy variables can explain some significant day-of-the-week effects, market risk alone appears insufficient to characterize this phenomenon.
Resumo:
Learning low dimensional manifold from highly nonlinear data of high dimensionality has become increasingly important for discovering intrinsic representation that can be utilized for data visualization and preprocessing. The autoencoder is a powerful dimensionality reduction technique based on minimizing reconstruction error, and it has regained popularity because it has been efficiently used for greedy pretraining of deep neural networks. Compared to Neural Network (NN), the superiority of Gaussian Process (GP) has been shown in model inference, optimization and performance. GP has been successfully applied in nonlinear Dimensionality Reduction (DR) algorithms, such as Gaussian Process Latent Variable Model (GPLVM). In this paper we propose the Gaussian Processes Autoencoder Model (GPAM) for dimensionality reduction by extending the classic NN based autoencoder to GP based autoencoder. More interestingly, the novel model can also be viewed as back constrained GPLVM (BC-GPLVM) where the back constraint smooth function is represented by a GP. Experiments verify the performance of the newly proposed model.
Resumo:
The long-term changes in the main tidal constituents (O1, K1, M2, N2, and S2) along the coasts of China and in adjacent seas are investigated based on 17 tide-gauge records covering the period 1954–2012. The observed 18.61 year nodal modulations of the diurnal constituents O1 and K1 are in agreement with the equilibrium tidal theory, except in the South China Sea. The observed modulations of the M2 and N2 amplitudes are smaller than theoretically predicted at the northern stations and larger at the southern stations. The discrepancies between the theoretically predicted nodal variations and the observations are discussed. The 8.85 year perigean cycle is identifiable in the N2 parameters at most stations, except those in the South China Sea. The radiational component of S2 contributes on average 16% of the observed S2 except in the Gulf of Tonkin, on the south coast, where it accounts for up to 65%. We confirmed the existence of nodal modulation in S2, which is stronger on the north coast. The semidiurnal tidal parameters show significant secular trends in the Bohai and Yellow Seas, on the north coast, and in the Taiwan Strait. The largest increase is found for M2 for which the amplitude increases by 4–7 mm/yr in the Yellow Sea. The potential causes for the linear trends in tidal constants are discussed.
Resumo:
The East China Sea is a hot area for typhoon waves to occur. A wave spectra assimilation model has been developed to predict the typhoon wave more accurately and operationally. This is the first time where wave data from Taiwan have been used to predict typhoon wave along the mainland China coast. The two-dimensional spectra observed in Taiwan northeast coast modify the wave field output by SWAN model through the technology of optimal interpolation (OI) scheme. The wind field correction is not involved as it contributes less than a quarter of the correction achieved by assimilation of waves. The initialization issue for assimilation is discussed. A linear evolution law for noise in the wave field is derived from the SWAN governing equations. A two-dimensional digital low-pass filter is used to obtain the initialized wave fields. The data assimilation model is optimized during the typhoon Sinlaku. During typhoons Krosa and Morakot, data assimilation significantly improves the low frequency wave energy and wave propagation direction in Taiwan coast. For the far-field region, the assimilation model shows an expected ability of improving typhoon wave forecast as well, as data assimilation enhances the low frequency wave energy. The proportion of positive assimilation indexes is over 81% for all the periods of comparison. The paper also finds that the impact of data assimilation on the far-field region depends on the state of the typhoon developing and the swell propagation direction.
Resumo:
This paper explores international transmission mechanism and its role in contagion effect in the housing markets across six major Asian cities. The analysis is based on the identification of house price diffusion effects through a global vector autoregressive (GVAR) model estimated using quarterly data for six major Asian cities (Hong Kong, Tokyo, Seoul, Singapore, Taipei and Bangkok) from 1991Q1 to 2011Q2. The empirical results indicate that the open economies heavily relying on international trade such as Singapore, Japan (Tokyo), Taiwan (Taipei) and Thailand (Bangkok) show positive correlations between the economy's openness and house prices, which is consistent with the Balassa–Samuelson hypothesis. Interestingly, some region-specific conditions also appear to play important roles as determinants of house price movements, which may be driven by restrictive housing policies and demand–supply imbalances such as Singapore and Bangkok. These results are reasonably robust across several model specifications. The findings bear significant implications for formulation of investment strategy and public policies.