27 resultados para synchronization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data assimilation refers to the problem of finding trajectories of a prescribed dynamical model in such a way that the output of the model (usually some function of the model states) follows a given time series of observations. Typically though, these two requirements cannot both be met at the same time–tracking the observations is not possible without the trajectory deviating from the proposed model equations, while adherence to the model requires deviations from the observations. Thus, data assimilation faces a trade-off. In this contribution, the sensitivity of the data assimilation with respect to perturbations in the observations is identified as the parameter which controls the trade-off. A relation between the sensitivity and the out-of-sample error is established, which allows the latter to be calculated under operational conditions. A minimum out-of-sample error is proposed as a criterion to set an appropriate sensitivity and to settle the discussed trade-off. Two approaches to data assimilation are considered, namely variational data assimilation and Newtonian nudging, also known as synchronization. Numerical examples demonstrate the feasibility of the approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. This study examines QBO–vortex coupling in an AGCM in which a QBO is spontaneously induced by resolved and parameterized waves. The QBO–vortex coupling in the AGCM compares favorably to that seen in reanalysis data [from the 40-yr ECMWF Re-Analysis (ERA-40)], provided that careful attention is given to the definition of QBO phase. A phase angle representation of the QBO is employed that is based on the two leading empirical orthogonal functions of equatorial zonal wind vertical profiles. This yields a QBO phase that serves as a proxy for the vertical structure of equatorial winds over the whole depth of the stratosphere and thus provides a means of subsampling the data to select QBO phases with similar vertical profiles of equatorial zonal wind. Using this subsampling, it is found that the QBO phase that induces the strongest polar vortex response in early winter differs from that which induces the strongest late-winter vortex response. This is true in both hemispheres and for both the AGCM and ERA-40. It follows that the strength and timing of QBO influence on the vortex may be affected by the partial seasonal synchronization of QBO phase transitions that occurs both in observations and in the model. This provides a mechanism by which changes in the strength of QBO–vortex correlations may exhibit variability on decadal time scales. In the model, such behavior occurs in the absence of external forcings or interannual variations in sea surface temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the degree of commonalities present in the cyclical behavior of the eight largest metropolitan housing markets in Australia. Using two techniques originally in the business cycle literature we consider the degree of synchronization present and secondly decompose the series’ into their permanent and cyclical components. Both empirical approaches reveal similar results. Sydney and Melbourne are closely related to each other and are relatively segmented from the smaller metropolitan areas. In contrast, there is substantial evidence of commonalities in the cyclical behavior of the remaining cities, especially those on the Eastern and Southern coasts of Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concordance in global office market cycles, Regional Studies. A large proportion of international real estate investment is concentrated in the office markets of the world's largest cities. However, many of these global cities are also key financial services centres, highlighting the possibility of reduced economic diversification from an investor's perspective. This paper assesses the degree of synchronization in cycles across twenty of the world's largest office markets, finding evidence of significant concordance across a large number of markets. The results highlight the problems associated with commonalities in the underlying economic bases of the markets. The concentration of investment also raises the possibility of common flow of funds effects that may further reduce diversification opportunities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Event-related desynchronization/synchronization (ERD/ERS) is a relative power decrease/increase of electroencephalogram (EEG) in a specific frequency band during physical motor execution and mental motor imagery, thus it is widely used for the brain-computer interface (BCI) purpose. However what the ERD really reflects and its frequency band specific role have not been agreed and are under investigation. Understanding the underlying mechanism which causes a significant ERD would be crucial to improve the reliability of the ERD-based BCI. We systematically investigated the relationship between conditions of actual repetitive hand movements and resulting ERD. Methods Eleven healthy young participants were asked to close/open their right hand repetitively at three different speeds (Hold, 1/3 Hz, and 1 Hz) and four distinct motor loads (0, 2, 10, and 15 kgf). In each condition, participants repeated 20 experimental trials, each of which consisted of rest (8–10 s), preparation (1 s) and task (6 s) periods. Under the Hold condition, participants were instructed to keep clenching their hand (i.e., isometric contraction) during the task period. Throughout the experiment, EEG signals were recorded from left and right motor areas for offline data analysis. We obtained time courses of EEG power spectrum to discuss the modulation of mu and beta-ERD/ERS due to the task conditions. Results We confirmed salient mu-ERD (8–13 Hz) and slightly weak beta-ERD (14–30 Hz) on both hemispheres during repetitive hand grasping movements. According to a 3 × 4 ANOVA (speed × motor load), both mu and beta-ERD during the task period were significantly weakened under the Hold condition, whereas no significant difference in the kinetics levels and interaction effect was observed. Conclusions This study investigates the effect of changes in kinematics and kinetics on resulting ERD during repetitive hand grasping movements. The experimental results suggest that the strength of ERD may reflect the time differentiation of hand postures in motor planning process or the variation of proprioception resulting from hand movements, rather than the motor command generated in the down stream, which recruits a group of motor neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no ‘cure’ at the present time. Brain–computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. Approach. Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. Main results. It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). Significance. The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no 'cure' at the present time. Brain-computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. APPROACH: Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. MAIN RESULTS: It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). SIGNIFICANCE: The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peak residential electricity demand takes place when people conduct simultaneous activities at specific times of the day. Social practices generate patterns of demand and can help understand why, where, with whom and when energy services are used at peak time. The aim of this work is to make use of recent UK time use and locational data to better understand: (i) how a set of component indices on synchronisation, variation, sharing and mobility indicate flexibility to shift demand; and (ii) the links between people’s activities and peaks in greenhouse gases’ intensities. The analysis is based on a recent UK time use dataset, providing 1 minute interval data from GPS devices and 10 minute data from diaries and questionnaires for 175 data days comprising 153 respondents. Findings show how greenhouse gases’ intensities and flexibility to shift activities vary throughout the day. Morning peaks are characterised by high levels of synchronisation, shared activities and occupancy, with low variation of activities. Evening peaks feature low synchronisation, and high spatial mobility variation of activities. From a network operator perspective, the results indicate that periods with lower flexibility may be prone to more significant local network loads due to the synchronization of electricity-demanding activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the degree of commonalities present in the cyclical behavior of the eight largest metropolitan housing markets in Australia. Using two techniques originally in the business cycle literature we consider the degree of synchronization present and secondly decompose the series’ into their permanent and cyclical components. Both empirical approaches reveal similar results. Sydney and Melbourne are closely related to each other and are relatively segmented from the smaller metropolitan areas. In contrast, there is substantial evidence of commonalities in the cyclical behavior of the remaining cities, especially those on the Eastern and Southern coasts of Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dance is a rich source of material for researchers interested in the integration of movement and cognition. The multiple aspects of embodied cognition involved in performing and perceiving dance have inspired scientists to use dance as a means for studying motor control, expertise, and action-perception links. The aim of this review is to present basic research on cognitive and neural processes implicated in the execution, expression, and observation of dance, and to bring into relief contemporary issues and open research questions. The review addresses six topics: 1) dancers’ exemplary motor control, in terms of postural control, equilibrium maintenance, and stabilization; 2) how dancers’ timing and on-line synchronization are influenced by attention demands and motor experience; 3) the critical roles played by sequence learning and memory; 4) how dancers make strategic use of visual and motor imagery; 5) the insights into the neural coupling between action and perception yielded through exploration of the brain architecture mediating dance observation; and 6) a neuroaesthetics perspective that sheds new light on the way audiences perceive and evaluate dance expression. Current and emerging issues are presented regarding future directions that will facilitate the ongoing dialogue between science and dance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimating trajectories and parameters of dynamical systems from observations is a problem frequently encountered in various branches of science; geophysicists for example refer to this problem as data assimilation. Unlike as in estimation problems with exchangeable observations, in data assimilation the observations cannot easily be divided into separate sets for estimation and validation; this creates serious problems, since simply using the same observations for estimation and validation might result in overly optimistic performance assessments. To circumvent this problem, a result is presented which allows us to estimate this optimism, thus allowing for a more realistic performance assessment in data assimilation. The presented approach becomes particularly simple for data assimilation methods employing a linear error feedback (such as synchronization schemes, nudging, incremental 3DVAR and 4DVar, and various Kalman filter approaches). Numerical examples considering a high gain observer confirm the theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.