53 resultados para statistical modelling, wind effects, signal propagation, wireless sensor networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe and implement a fully discrete spectral method for the numerical solution of a class of non-linear, dispersive systems of Boussinesq type, modelling two-way propagation of long water waves of small amplitude in a channel. For three particular systems, we investigate properties of the numerically computed solutions; in particular we study the generation and interaction of approximate solitary waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of projected climate change on wine production was analysed for the Demarcated Region of Douro, Portugal. A statistical grapevine yield model (GYM) was developed using climate parameters as predictors. Statistically significant correlations were identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle. These atmospheric factors control grapevine yield in the region, with the GYM explaining 50.4% of the total variance in the yield time series in recent decades. Anomalously high March rainfall (during budburst, shoot and inflorescence development) favours yield, as well as anomalously high temperatures and low precipitation amounts in May and June (May: flowering and June: berry development). The GYM was applied to a regional climate model output, which was shown to realistically reproduce the GYM predictors. Finally, using ensemble simulations under the A1B emission scenario, projections for GYM-derived yield in the Douro Region, and for the whole of the twenty-first century, were analysed. A slight upward trend in yield is projected to occur until about 2050, followed by a steep and continuous increase until the end of the twenty-first century, when yield is projected to be about 800 kg/ha above current values. While this estimate is based on meteorological parameters alone, changes due to elevated CO2 may further enhance this effect. In spite of the associated uncertainties, it can be stated that projected climate change may significantly benefit wine yield in the Douro Valley.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the VOCALS campaign spaceborne satellite observations showed that travelling gravity wave packets, generated by geostrophic adjustment, resulted in perturbations to marine boundary layer (MBL) clouds over the south-east Pacific Ocean (SEP). Often, these perturbations were reversible in that passage of the wave resulted in the clouds becoming brighter (in the wave crest), then darker (in the wave trough) and subsequently recovering their properties after the passage of the wave. However, occasionally the wave packets triggered irreversible changes to the clouds, which transformed from closed mesoscale cellular convection to open form. In this paper we use large eddy simulation (LES) to examine the physical mechanisms that cause this transition. Specifically, we examine whether the clearing of the cloud is due to (i) the wave causing additional cloud-top entrainment of warm, dry air or (ii) whether the additional condensation of liquid water onto the existing drops and the subsequent formation of drizzle are the important mechanisms. We find that, although the wave does cause additional drizzle formation, this is not the reason for the persistent clearing of the cloud; rather it is the additional entrainment of warm, dry air into the cloud followed by a reduction in longwave cooling, although this only has a significant effect when the cloud is starting to decouple from the boundary layer. The result in this case is a change from a stratocumulus to a more patchy cloud regime. For the simulations presented here, cloud condensation nuclei (CCN) scavenging did not play an important role in the clearing of the cloud. The results have implications for understanding transitions between the different cellular regimes in marine boundary layer (MBL) clouds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless video sensor networks have been a hot topic in recent years; the monitoring capability is the central feature of the services offered by a wireless video sensor network can be classified into three major categories: monitoring, alerting, and information on-demand. These features have been applied to a large number of applications related to the environment (agriculture, water, forest and fire detection), military, buildings, health (elderly people and home monitoring), disaster relief, area and industrial monitoring. Security applications oriented toward critical infrastructures and disaster relief are very important applications that many countries have identified as critical in the near future. This paper aims to design a cross layer based protocol to provide the required quality of services for security related applications using wireless video sensor networks. Energy saving, delay and reliability for the delivered data are crucial in the proposed application. Simulation results show that the proposed cross layer based protocol offers a good performance in term of providing the required quality of services for the proposed application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a vital factor affecting system cost and lifetime, energy consumption in wireless sensor networks (WSNs) has been paid much attention to. This article reviews existing energy harvesting technology applied in WSNs, and analyzes advantages of harvesting radio frequency (RF) energy in WSNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The content of this paper is a snapshot of a current project looking at producing a real-time sensor-based building assessment tool, and a system that personalises workspaces using multi-agent technology. Both systems derive physical environment information from a wireless sensor network that allows clients to subscribe to real-time sensed data. The principal ideologies behind this project are energy efficiency and well-being of occupants; in the context of leveraging the current state-of-the-art in agent technology, wireless sensor networks and building assessment systems to enable the optimisation and assessment of buildings. Participants of this project are from both industry (construction and research) and academia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The content of this paper is a snapshot of a current project looking at producing a real-time sensor-based building assessment tool, and a system that personalises work-spaces using multi-agent technology. Both systems derive physical environment information from a wireless sensor network that allows clients to subscribe to real-time sensed data. The principal ideologies behind this project are energy efficiency and well-being of occupants; in the context of leveraging the current state-of-the-art in agent technology, wireless sensor networks and building assessment systems to enable the optimisation and assessment of buildings. Participants of this project are from both industry (construction and research) and academia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the RFID implants for identification via a sensor network. Brain-computer implants linked in to a wireless network. Biometric identification via body sensors is also discussed. The use of a network as a means for remote and distance monitoring of humans opens up a range of potential uses. Where implanted identification is concerned this immediately offers high security access to specific areas by means of only an RFID device. If a neural implant is employed then clearly the information exchanged with a network can take on a much richer form, allowing for identification and response to an individual's needs based on the signals apparent on their nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The K-Means algorithm for cluster analysis is one of the most influential and popular data mining methods. Its straightforward parallel formulation is well suited for distributed memory systems with reliable interconnection networks, such as massively parallel processors and clusters of workstations. However, in large-scale geographically distributed systems the straightforward parallel algorithm can be rendered useless by a single communication failure or high latency in communication paths. The lack of scalable and fault tolerant global communication and synchronisation methods in large-scale systems has hindered the adoption of the K-Means algorithm for applications in large networked systems such as wireless sensor networks, peer-to-peer systems and mobile ad hoc networks. This work proposes a fully distributed K-Means algorithm (EpidemicK-Means) which does not require global communication and is intrinsically fault tolerant. The proposed distributed K-Means algorithm provides a clustering solution which can approximate the solution of an ideal centralised algorithm over the aggregated data as closely as desired. A comparative performance analysis is carried out against the state of the art sampling methods and shows that the proposed method overcomes the limitations of the sampling-based approaches for skewed clusters distributions. The experimental analysis confirms that the proposed algorithm is very accurate and fault tolerant under unreliable network conditions (message loss and node failures) and is suitable for asynchronous networks of very large and extreme scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless technology based pervasive healthcare has been proposed in many applications such as disease management and accident prevention for cost saving and promoting citizen’s wellbeing. However, the emphasis so far is on the artefacts with limited attentions to guiding the development of an effective and efficient solution for pervasive healthcare. Therefore, this paper aims to propose a framework of multi-agent systems design for pervasive healthcare by adopting the concept of pervasive informatics and using the methods of organisational semiotics. The proposed multi-agent system for pervasive healthcare utilises sensory information to support healthcare professionals for providing appropriate care. The key contributions contain theoretical aspect and practical aspect. In theory, this paper articulates the information interactions between the pervasive healthcare environment and stakeholders by using the methods of organisational semiotics; in practice, the proposed framework improves the healthcare quality by providing appropriate medical attentions when and as needed. In this paper, both systems and functional architecture of the multi-agent system are elaborated with the use of wireless technologies such as RFID and wireless sensor networks. The future study will focus on the implementation of the proposed framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Body Sensor Networks (BSNs) have been recently introduced for the remote monitoring of human activities in a broad range of application domains, such as health care, emergency management, fitness and behaviour surveillance. BSNs can be deployed in a community of people and can generate large amounts of contextual data that require a scalable approach for storage, processing and analysis. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of data streams generated in BSNs. This paper proposes BodyCloud, a SaaS approach for community BSNs that supports the development and deployment of Cloud-assisted BSN applications. BodyCloud is a multi-tier application-level architecture that integrates a Cloud computing platform and BSN data streams middleware. BodyCloud provides programming abstractions that allow the rapid development of community BSN applications. This work describes the general architecture of the proposed approach and presents a case study for the real-time monitoring and analysis of cardiac data streams of many individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trust is one of the most important factors that influence the successful application of network service environments, such as e-commerce, wireless sensor networks, and online social networks. Computation models associated with trust and reputation have been paid special attention in both computer societies and service science in recent years. In this paper, a dynamical computation model of reputation for B2C e-commerce is proposed. Firstly, conceptions associated with trust and reputation are introduced, and the mathematical formula of trust for B2C e-commerce is given. Then a dynamical computation model of reputation is further proposed based on the conception of trust and the relationship between trust and reputation. In the proposed model, classical varying processes of reputation of B2C e-commerce are discussed. Furthermore, the iterative trust and reputation computation models are formulated via a set of difference equations based on the closed-loop feedback mechanism. Finally, a group of numerical simulation experiments are performed to illustrate the proposed model of trust and reputation. Experimental results show that the proposed model is effective in simulating the dynamical processes of trust and reputation for B2C e-commerce.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed three different knowledge-dissemination methods for educating Tanzanian smallholder farmers about mastitis in their dairy cattle. The effectiveness of these methods (and their combinations) was evaluated and quantified using a randomised controlled trial and multilevel statistical modelling. To our knowledge, this is the first study that has used such techniques to evaluate the effectiveness of different knowledge-dissemination interventions for adult learning in developing countries. Five different combinations of knowledge-dissemination method were compared: 'diagrammatic handout' ('HO'), 'village meeting' ('VM'), 'village meeting and video' ('VM + V), 'village meeting and diagrammatic handout' ('VM + HO') and 'village meeting, video and diagrammatic handout' ('VM + V + HO'). Smallholder dairy farmers were exposed to only one of these interventions, and the effectiveness of each was compared to a control ('C') group, who received no intervention. The mastitis knowledge of each farmer (n = 256) was evaluated by questionnaire both pre- and post-dissemination. Generalised linear mixed models were used to evaluate the effectiveness of the different interventions. The outcome variable considered was the probability of volunteering correct responses to mastitis questions post-dissemination, with 'village' and 'farmer' considered as random effects in the model. Results showed that all five interventions, 'HO' (odds ratio (OR) = 3.50, 95% confidence intervals (CI) = 3.10, 3.96), 'VM + V + HO' (OR = 3.34, 95% CI = 2.94, 3.78), 'VM + HO, (OR=3.28, 95% CI=2.90, 3.71), WM+V (OR=3.22, 95% CI=2.84, 3.64) and 'VM' (OR = 2.61, 95% CI = 2.31, 2.95), were significantly (p < 0.0001) more effective at disseminating mastitis knowledge than no intervention. In addition, the 'VM' method was less effective at disseminating mastitis knowledge than other interventions. Combinations of methods showed no advantage over the diagrammatic handout alone. Other explanatory variables with significant positive associations on mastitis knowledge included education to secondary school level or higher, and having previously learned about mastitis by reading pamphlets or attendance at an animal-health course. (c) 2005 Elsevier B.V. All rights reserved.