40 resultados para soil quality


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combined use of organic residue and inorganic fertiliser-phosphorus (P) is appropriate in meeting both the short and long-term P requirement of crops. To assess the influence of added inorganic fertiliser-P on the processes of decomposition and P release from the residue and the relationships with quality, prunings of Gliricidia sepium, Leucaena leucocephela, Senna siamea, Acacia mangium and Paraserienthus falcataria were incubated without and with added inorganic fertiliser-P for 56 days. Soil was added only as inoculum. Decomposition rate and amounts of acid extractable-P (P release) were in the same order: G. sepium > S. siamea > L. leucocepheta > P falcataria > A. mangium. Unlike the other residues, A. mangium released no P despite the loss of half its mass during the 8 weeks of incubation. The residue P content correlated with P release. However, decomposition rate did not correlate with residue P content but with the lignin, polyphenol and cellulose content, and ratios to P. These ratios were negatively correlated with P release suggesting that lignin and polyphenol contents influence P release more when the residue-P content is low. Results suggest that rate of decomposition influences the release of P. The critical residue P content for P release was estimated to be 0.12% < P < 0.19%. Added P had no effect on decomposition and P release from the residues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The common GIS-based approach to regional analyses of soil organic carbon (SOC) stocks and changes is to define geographic layers for which unique sets of driving variables are derived, which include land use, climate, and soils. These GIS layers, with their associated attribute data, can then be fed into a range of empirical and dynamic models. Common methodologies for collating and formatting regional data sets on land use, climate, and soils were adopted for the project Assessment of Soil Organic Carbon Stocks and Changes at National Scale (GEFSOC). This permitted the development of a uniform protocol for handling the various input for the dynamic GEFSOC Modelling System. Consistent soil data sets for Amazon-Brazil, the Indo-Gangetic Plains (IGP) of India, Jordan and Kenya, the case study areas considered in the GEFSOC project, were prepared using methodologies developed for the World Soils and Terrain Database (SOTER). The approach involved three main stages: (1) compiling new soil geographic and attribute data in SOTER format; (2) using expert estimates and common sense to fill selected gaps in the measured or primary data; (3) using a scheme of taxonomy-based pedotransfer rules and expert-rules to derive soil parameter estimates for similar soil units with missing soil analytical data. The most appropriate approach varied from country to country, depending largely on the overall accessibility and quality of the primary soil data available in the case study areas. The secondary SOTER data sets discussed here are appropriate for a wide range of environmental applications at national scale. These include agro-ecological zoning, land evaluation, modelling of soil C stocks and changes, and studies of soil vulnerability to pollution. Estimates of national-scale stocks of SOC, calculated using SOTER methods, are presented as a first example of database application. Independent estimates of SOC stocks are needed to evaluate the outcome of the GEFSOC Modelling System for current conditions of land use and climate. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The water quality of the Pang and Lambourn, tributaries of the River Thames, in south-eastern England, is described in relation to spatial and temporal dimensions. The river waters are supplied mainly from Chalk-fed aquifer sources and are, therefore, of a calcium-bicarbonate type. The major, minor and trace element chemistry of the rivers is controlled by a combination of atmospheric and pollutant inputs from agriculture and sewage sources superimposed on a background water quality signal linked to geological sources. Water quality does not vary greatly over time or space. However. in detail, there are differences in water quality between the Pang and Lambourn and between sites along the Pang and the Lambourn. These differences reflect hydrological processes, water flow pathways and water quality input fluxes. The Pangs pattern of water quality change is more variable than that of the Lambourn. The flow hydrograph also shows both a cyclical and 'uniform pattern' characteristic of aquifer drainage with, superimposed, a series of 'flashier' spiked responses characteristic of karstic systems. The Lambourn, in contrast, shows simpler features without the 'flashier' responses, The results are discussed in relation to the newly developed UK community programme LOCAR dealing with Lowland Catchment Research. A descriptive and box model structure is provided to describe the key features of water quality variations in relation to soil, unsaturated and groundwater flows and storage both away from and close to the river.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing areas of altered wetland are being restored by re-flooding the soil. Evidence in the literature indicates that this practice can induce the redox-mediated release of soil nutrients, thereby increasing the risk of diffuse water pollution. However, for the sake of improving wedand management decisions, there is a need for more detailed studies of the underlying relationship between the hydrological and redox dynamics that explain this risk; this is particularly the case in agricultural peatlands that are commonly targeted for the creation of lowland wet grassland. A 12-month field study was conducted to evaluate the relationship between hydrological fluctuations and soil redox potential (Eh) in a nutrient-rich peat field (32 g N kg(-1) and 1100 mg P kg(-1) in the surface 0-30 cm soil) that had been restored as lowland wet grassland from intensive arable production. Field tensiometers were installed at the 30-, 60- and 90-cm soil depths, and Pt electrodes at the 10-, 30-, 60- and 90-cm depths, for daily logging of soil water tension and Eh, respectively. The values for soil water tension displayed a strong negative relationship (P < 0.001) with monthly dip well observations of water table height. Calculations of soil water potential from the logged tension values were used, therefore, to provide a detailed profile of field water level and, together with precipitation data, explained some of the variation in Eh. For example, during the summer, alternating periods of aerobism (Eh > 330 mV) in the surface, 0-10 cm layer of peat coincided with intense precipitation events. Redox potential throughout the 30-100 cm profile also fluctuated seasonally; indeed, at all depths Eh displayed a strong, negative relationship (P < 0.001) with water table height over the 12-month study period. However, Eh throughout the 30-100 cm profile remained relatively low (< 230 mV), indicating permanently reduced conditions that are associated with denitrification and reductive dissolution of Fe-bound P. The implications of these processes in the N- and P-rich peat for wetland plant diversity and water quality are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustaining soil fertility is essential to the prosperity of many households in the mid-hills of Nepal, but there are concerns that the breakdown of the traditional linkages between forest, livestock, and cropping systems is adversely affecting fertility. This study used triangulated data from surveys of households, discussion groups, and key informants in 16 wards in eastern and western Nepal to determine the existing practices for soil fertility management, the extent of such practices, and the perception of the direction of changes in soil fertility. The two principal practices for maintaining soil fertility were the application of farmyard manure (FYM) and of chemical fertilizer (mainly urea and diammonium phosphate). Green manuring, in-situ manuring, slicing terrace risers, and burning plant residues are rarely practiced. FYM usage was variable with more generally applied to khet land (average 6053 kg fresh weight manure ha(-1)) than to bari land (average 4185 kg fresh weight manure ha-1) with manure from goats and poultry preferred above that from cows and buffaloes. Almost all households (98%) apply urea to khet land and 87% to bari land, with 45% applying diammonium phosphate to both types of land. Application rates and timings of applications varied considerably both within and between wards suggesting poor knowledge transfer between the research and farming communities. The benefits of chemical fertilizers in terms of ease of application and transportation in comparison with FYM, were perceived to outweigh the widely reported detrimental hardening of soil associated with their continued usage. Among key informants, FYM applied in conjunction with chemical fertilizer was the most popular amendment, with FYM alone preferred more than chemical fertilizer alone - probably because of the latter's long-term detrimental effects. Key informant and householder surveys differed in their perception of fertility changes in the last decade probably because of differences in age and site-specific knowledge. All key informants felt that fertility had declined but among households, only about 40% perceived a decline with the remainder about evenly divided between no change and an increase. Householders with small landholdings (< 0.5 ha) were more likely to perceive increasing soil fertility while those with larger landholdings (> 2 ha) were more likely to perceive declining fertility. Perceived changes in soil fertility were not related to food self-sufficiency. The reasons for the slow spread of new technologies within wards and the poor understanding of optimal use of chemical fertilizers in conjunction with improved quality FYM may repay further investigation in terms of sustaining soil fertility in this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil contamination by arsenic (As) presents a hazard in many countries and there is a need for techniques to minimize As uptake by plants. A proposed in situ remediation method was tested by growing lettuce (Lactuca sativa L. cv. Kermit) in a greenhouse pot experiment on soil that contained 577 mg As kg(-1), taken from a former As smelter site. All combinations of iron (Fe) oxides, at concentrations of 0.00, 0.22, 0.54, and 1.09% (w/w), and lime, at concentrations of 0.00, 0.27, 0.68, and 1.36% (w/w), were tested in a factorial design. To create the treatments, field-moist soil, commercial-grade FeSO4, and ground agricultural lime were mixed and stored for one week, allowing Fe oxides to precipitate. Iron oxides gave highly significant (P < 0.001) reductions in lettuce As concentrations, down to 11% of the lettuce As concentration for untreated soil. For the Fe oxides and lime treatment combinations where soil pH was maintained nearly constant, the lettuce As concentration declined in an exponential relationship with increasing FeSO4 application rate and lettuce yield was almost unchanged. Iron oxides applied at a concentration of 1.09% did not give significantly lower lettuce As concentrations than the 0.54% treatment. Simultaneous addition of lime with FeSO4 was essential. Ferrous sulfate with insufficient lime lowered soil pH and caused mobilization of Al, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn. At the highest Fe oxide to lime ratios, Mn toxicity caused severe yield loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reclaimed water provides an important contribution to the water balance in water-scarce Jordan, but the quality of this water presents both benefits and challenges. Careful management of reclaimed water is required to maximize the nutrient benefits while minimizing the salinity risks. This work uses a multi-disciplinary research approach to show that soil response to irrigation with reclaimed water is a function of the management strategies adopted on the farm by the water user. The adoption of management methods to maintain soil productivity can be seen to be a result of farmers’ awareness to potentially plant-toxic ions in the irrigation water (70% of Jordan Valley farmers identified salinization as a hazard from irrigation with reclaimed water). However, the work also suggests that farmers’ management capacity is affected by the institutional management of water. About a third (35%) of farmers in the Jordan Valley claimed that their ability to manage salinization was limited by water shortages. Organizational interviews revealed that institutional awareness of soil management challenges was quite high (34% of interviewees described salinization as a risk from water reuse), but strategies to address this challenge at the institutional level require greater development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review covers research linking foraging habitat quality for birds to livestock management in lowland farmland. Based on this research we propose a framework for predicting the value of grazing systems to birds. This predictive framework is needed to guide the development of agri-environment measures to address farmland bird declines in pastoral areas. We show that the exacting requirements of declining granivorous birds pose the greatest challenges, while the needs of soil invertebrate feeding species are more easily met.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Folsomia candida Willem 1902, a member of the order Collembola (colloquially called springtails), is a common and widespread arthropod that occurs in soils throughout the world. The species is parthenogenetic and is easy to maintain in the laboratory on a diet of granulated dry yeast. F. candida has been used as a "standard" test organism for more than 40 years for estimating the effects of pesticides and environmental pollutants on nontarget soil arthropods. However. it has also been employed as a model for the investigation of numerous other phenomena such as cold tolerance, quality as a prey item, and effects of microarthropod grazing on pathogenic fungi and mycorrhizae of plant roots. In this comprehensive review. aspects of the life history, ecology, and ecotoxicology of F candida are covered. We focus on the recent literature, especially studies that have examined the effects of soil pollutants on reproduction in F candida using the protocol published by the International Standards Organization in 1999.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments in controlled environments examined the effects of the timing and severity of drought, and increased temperature, on grain development of Hereward winter wheat. Environmental effects on grain specific weight, protein content, Hagberg Falling Number, SDS-sedimentation volume, and sulphur content were also studied. Drought and increased temperature applied before the end of grain filling shortened the grain filling period and reduced grain yield, mean grain weight and specific weight. Grain filling was most severely affected by drought between days 1-14 after anthesis. Protein content was increased by stresses before the end of grain growth, because nitrogen harvest index was less severely affected than was dry matter harvest index. Hagberg Falling Number was increased to the greatest extent by stresses applied 15-28 days after anthesis. Treatment effects on grain sulphur content were similar to those on protein content, such that N:S ratio was not significantly affected by drought nor temperature stresses. The effects of restricted water on grain yield and quality were linearly related to soil moisture between 44 and about 73% field capacity (FC) from days 15-28. Drought stress (but not temperature stress) before the end of grain filling decreased SDS-sedimentation volume relative to drought applied later. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term effects of the elevated atmospheric CO2 on biosphere have been in focus of research since the last few decades. In this experiment undisturbed soil monoliths of loess grassland were exposed to an elevated CO2 environment (two-times the ambient CO2 level) for a period of six years with the aid of the open top chamber method. Control without a chamber and CO2 elevation was applied as well. Elevated CO2 level had very little impact oil soil food web. It did not influence either root and microbial biomass or microbial and nematode community structure. The only significant response was that density of the bacterial feeder genus Heterocephalobus increased in the chamber with elevated CO2 concentration. Application of the open top chambers initiated more changes on nematodes than the elevated CO2 level. Open top chamber (OTC) method decreased nematode density (total and plant feeder as well) to less than half of the original level. Negative effect was found on the genus level in the case of fungal feeder Aphelenchoides, plant feeder Helicotylenchus and Paratylenchus. It is very likely that the significantly lower belowground root biomass and partly its decreased quality reflected by the increased C/N ratio are the main responsible factors for the lower density of the plant feeder nematodes in the plots of chambers. According to diversity profiles, MI and MI(2-15) parameters, nematode communities in the open top chambers (both on ambient and elevated CO2 level) seem to be more structured than those under normal circumstances six years after start of the experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential reproductive value of arbuscular mycorrhizal fungi (Gloinus intraradices and Glomus invermaium), root pathogenic fungi (Rhizoctonia solani and Fusarium culmorum) and saprotrophic fungi (Penicillium hordei and Trichoderma harzianum) were examined for the collembolans Folsomia candida Willem and Folsomia fimetaria L. Dried baker's yeast (Saccharomyces cerevisiae) was used as a reference standard food in laboratory cultures. Collembolan performance was determined as final size, fecundity and population growth rate after when fed the fungal food sources for 31 days. The mycorrhizal fungi gave the least growth and fecundity compared with the other fungi, but G. intraradices gave good fecundity for F. candida. In terms of growth, Baker's yeast was a high-quality food for both adults and juveniles of both species, but it was a poorer food in terms of fecundity of F. candida. Preference of the fungi in all possible pairwise combinations showed that although F. fimetaria did not perform well on Glomus spp. and F. candida did not grow well on Glomus spp. their preference for these fungi did not reflect this. The highest fecundity was seen with the root pathogen F. culmorum. Different quality indicators such as the C:N ratio of the fungal food sources as well as other biological parameters are discussed in relation to their reproductive value and Collembola preferential feeding. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Folsomia candida Willem 1902, a member of the order Collembola (colloquially called springtails), is a common and widespread arthropod that occurs in soils throughout the world. The species is parthenogenetic and is easy to maintain in the laboratory on a diet of granulated dry yeast. F. candida has been used as a "standard" test organism for more than 40 years for estimating the effects of pesticides and environmental pollutants on nontarget soil arthropods. However. it has also been employed as a model for the investigation of numerous other phenomena such as cold tolerance, quality as a prey item, and effects of microarthropod grazing on pathogenic fungi and mycorrhizae of plant roots. In this comprehensive review. aspects of the life history, ecology, and ecotoxicology of F candida are covered. We focus on the recent literature, especially studies that have examined the effects of soil pollutants on reproduction in F candida using the protocol published by the International Standards Organization in 1999.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments in controlled environments examined the effects of the timing and severity of drought, and increased temperature, on grain development of Hereward winter wheat. Environmental effects on grain specific weight, protein content, Hagberg Falling Number, SDS-sedimentation volume, and sulphur content were also studied. Drought and increased temperature applied before the end of grain filling shortened the grain filling period and reduced grain yield, mean grain weight and specific weight. Grain filling was most severely affected by drought between days 1-14 after anthesis. Protein content was increased by stresses before the end of grain growth, because nitrogen harvest index was less severely affected than was dry matter harvest index. Hagberg Falling Number was increased to the greatest extent by stresses applied 15-28 days after anthesis. Treatment effects on grain sulphur content were similar to those on protein content, such that N:S ratio was not significantly affected by drought nor temperature stresses. The effects of restricted water on grain yield and quality were linearly related to soil moisture between 44 and about 73% field capacity (FC) from days 15-28. Drought stress (but not temperature stress) before the end of grain filling decreased SDS-sedimentation volume relative to drought applied later. (C) 2003 Elsevier Science Ltd. All rights reserved.