97 resultados para soil pH, nutrient


Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. 2. Using data from an extensive national survey of English grasslands we show that surface soil (0-7cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. 3. Soil C stocks in the largest pool, of intermediate particle size (50-250 µm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0.45-50 µm), was explained by soil pH and the community abundance weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N rich vegetation. The C stock in the small active fraction (250-4000 µm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. 4. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. 5. Synthesis and Applications: Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1-100,000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

More than half of global soil carbon is stored as carbonates, primarily in arid and semi-arid zones. Climate change models predict more frequent and severe rainfall events in some parts of the globe, many of which are dominated by calcareous soils. Such events trigger substantial increases in soil CO2 efflux. We hypothesised that the primary source of CO2 emissions from calcareous, arid zone soil during a single wetting event is abiotic and that soil acidification and wetting have a positive, potentially interacting, effect. We manipulated soil pH, soil moisture, and controlled soil respiration by gamma irradiating half of an 11 day incubation experiment. All manipulated experimental treatments had a rapid and enormous effect on CO2 emission. Respiration contributed ca. 5% of total CO2 efflux; the major source (carbonate buffering) varied depending on the extent of acidification and wetting. Maximum CO2 efflux occurred when pH was lowest and at intermediate matric potential. CO2 efflux was lowest at native pH when soil was air dry. Our data suggest that there may be an underestimate of soil-atmosphere carbon fluxes in arid ecosystems with calcareous soils. There is also a clear potential that these soils may become net carbon sources depending on changes in rainfall patterns, rainfall acidity, and future land management. Our findings have major implications for carbon cycling in arid zone soil and further study of carbon dynamics in these terrestrial systems at a landscape level will be required if we are to improve global climate and carbon cycling models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Forensic taphonomy involves the use of decomposition to estimate postmortem interval (PMI) or locate clandestine graves. Yet, cadaver decomposition remains poorly understood, particularly following burial in soil. Presently, we do not know how most edaphic and environmental parameters, including soil moisture, influence the breakdown of cadavers following burial and alter the processes that are used to estimate PMI and locate clandestine graves. To address this, we buried juvenile rat (Rattus rattus) cadavers (∼18 g wet weight) in three contrasting soils from tropical savanna ecosystems located in Pallarenda (sand), Wambiana (medium clay), or Yabulu (loamy sand), Queensland, Australia. These soils were sieved (2 mm), weighed (500 g dry weight), calibrated to a matric potential of -0.01 megapascals (MPa), -0.05 MPa, or -0.3 MPa (wettest to driest) and incubated at 22 °C. Measurements of cadaver decomposition included cadaver mass loss, carbon dioxide-carbon (CO2-C) evolution, microbial biomass carbon (MBC), protease activity, phosphodiesterase activity, ninhydrin-reactive nitrogen (NRN) and soil pH. Cadaver burial resulted in a significant increase in CO2-C evolution, MBC, enzyme activities, NRN and soil pH. Cadaver decomposition in loamy sand and sandy soil was greater at lower matric potentials (wetter soil). However, optimal matric potential for cadaver decomposition in medium clay was exceeded, which resulted in a slower rate of cadaver decomposition in the wettest soil. Slower cadaver decomposition was also observed at high matric potential (-0.3 MPa). Furthermore, wet sandy soil was associated with greater cadaver decomposition than wet fine-textured soil. We conclude that gravesoil moisture content can modify the relationship between temperature and cadaver decomposition and that soil microorganisms can play a significant role in cadaver breakdown. We also conclude that soil NRN is a more reliable indicator of gravesoil than soil pH.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ecology of soils associated with dead mammals (i.e. cadavers) is poorly understood. Although temperature and soil type are well known to influence the decomposition of other organic resource patches, the effect of these variables on the degradation of cadavers in soil has received little experimental investigation. To address this, cadavers of juvenile rats (Rattus rattus) were buried in one of three contrasting soils (Sodosol, Rudosol, and Vertosol) from tropical savanna ecosystems in Queensland, Australia and incubated at 29 °C, 22 °C, or 15 °C in a laboratory setting. Cadavers and soils were destructively sampled at intervals of 7 days over an incubation period of 28 days. Measurements of decomposition included cadaver mass loss, carbon dioxide–carbon (CO2–C) evolution, microbial biomass carbon (MBC), protease activity, phosphodiesterase activity, and soil pH, which were all significantly positively affected by cadaver burial. A temperature effect was observed where peaks or differences in decomposition that at occurred at higher temperature would occur at later sample periods at lower temperature. Soil type also had an important effect on some measured parameters. These findings have important implications for a largely unexplored area of soil ecology and nutrient cycling, which are significant for forensic science, cemetery planning and livestock carcass disposal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biocidal treatment of soil is used to remove or inhibit soil microbial activity, and thus provides insight into the relationship between soil biology and soil processes. Chemical (soil pH, phosphodiesterase, protease) and biological (substrate induced respiration) characteristics of three contrasting soils from tropical savanna ecosystems in north Queensland, Australia were measured in field fresh samples and following autoclaving (121 °C/103 kPa for 30 min on two consecutive days). Autoclaving treatment killed the active soil microbial biomass and significantly decreased protease activity (∼90%) in all three soils. Phosphodiesterase activity in kaolinitic soils also significantly decreased by 78% and 92%. However, autoclave treatment of smectitic soil only decreased phosphodiesterase activity by 4% only. This study demonstrates phosphodiesterase can remain stable in extreme conditions. This might be a characteristic vital to the cycling of phosphorus in shrink–swell clays in Australian tropical savanna ecosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A laboratory experiment was conducted to determine the effect of temperature (2, 12, 22 °C) on the rate of aerobic decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil incubated for a period of 42 days. Measurements of decomposition processes included skeletal muscle tissue mass loss, carbon dioxide (CO2) evolution, microbial biomass, soil pH, skeletal muscle tissue carbon (C) and nitrogen (N) content and the calculation of metabolic quotient (qCO2). Incubation temperature and skeletal muscle tissue quality had a significant effect on all of the measured process rates with 2 °C usually much lower than 12 and 22 °C. Cumulative CO2 evolution at 2, 12 and 22 °C equaled 252, 619 and 905 mg CO2, respectively. A significant correlation (P<0.001) was detected between cumulative CO2 evolution and tissue mass loss at all temperatures. Q10s for mass loss and CO2 evolution, which ranged from 1.19 to 3.95, were higher for the lower temperature range (Q10(2– 12 °C)>Q10(12–22 °C)) in the Ovis samples and lower for the low temperature range (Q10(2–12 °C)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silicon release from rice straw and amorphous silica when shaken in solution with five Sri Lankan soils was studied indirectly using sorption isotherms and changes in concentration and directly using straw in dialysis bags examined using electron microscopy. The aim was to further our understanding of the processes and factors affecting the release of straw-Si in soils and its availability to rice. The soils (alfisols and ultisols) shaken with 0.1 M NaCl (5 g per 125 mL for 250 days) produced concentrations of 1 - 4 mg L-1 of monosilicic acid-Si. Amorphous silica added to these suspensions (36.5 mg, containing 17 mg Si) raised the concentrations to 20 - 40 mg L-1, and added rice straw (0.5 g, containing 17 mg Si) gave 10 - 25 mg L-1. Sorption isotherms (7 days equilibrations) were used to calculate from the concentrations the amounts of Si released ( 24 - 38% and 8 - 21%, respectively). Both materials gave about 40 mg L-1 of monosilicic acid-Si plus 30 mg L-1 of disilicic acid-Si when shaken in solution alone (5 g per 125 mL). Straw in dialysis bags ( 0.5 g per 25 mL in 0.1 M NaCl) was shaken in soil suspension ( 5 g per 100 mL) for 60 days. Similar concentrations and releases were measured to those obtained above. About one fifth of the mass of straw was lost by decomposition in the first 15 days. A chloroform treatment prevented decomposition, but Si release was unaffected. Disintegration continued throughout the experiments, with phytoliths being exposed and dissolved. Compared to the rate of release from straw into solution without soil, the release of Si into soil suspensions was increased during the first 20 days by adsorption on the soil, but was then reduced probably through the effect of Fe and Al on the phytolith surfaces. The extent of this blocking effect varied between soils and was not simply related to soil pH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Toxic trace elements present an environmental hazard in the vicinity of mining and smelting activities. However. the processes of transfer of these elements to groundwater and to plants are not always clear. Tharsis mine. in the Iberian pyrite belt (SW Spain), has been exploited since 2500 BC, with extensive smelting, taking place front the 1850S until the 1920s. Sixty four soil (mainly topsoils) and vegetation samples were collected in February 2001 and analysed by ICP-AES for 23 elements. Concentrations are 6-6300 mg kg(-1) As and 14-24800 mg kg(-1) Pb in soils, and 0.20-9 mg kg(-1) As and 2-195 mg Pb in vegetation. Trace element concentrations decrease rapidly away from the mine. with As and Pb concentrations in the range 6-1850 mg kg(-1) (median 22 mg kg(-1)) and 14-31 mg, kg(-1) (median 43 mg, kg(-1)), respectively, 1 km away from the mine. These concentrations are low when compared to other well-studied mining and smelting areas (e.g. 600 mg kg(-1) As at 8 km from Yellowknife smelter, Canada; >100 mg kg(-1) Pb over 270 km(2) around the Pb-Zn Port Pirie smelter. South Australia: mean of 1419 mg kg(-1) Pb around Aberystwyth smelter, Wales, UK). The high metal content of the vegetation and the low soil pH (mean pH 4.93) indicate the potential for trace element mobility which Could explain the relatively low concentration of metals in Tharsis topsoils and cause threats to plans to redevelop the Tharsis area as an orange plantation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Procedures for routine analysis of soil phosphorus (P) have been used for assessment of P status, distribution and P losses from cultivated mineral soils. No similar studies have been carried out on wetland peat soils. The objective was to compare extraction efficiency of ammonium lactate (PAL), sodium bicarbonate (P-Olsen), and double calcium lactate (P-DCaL) and P distribution in the soil profile of wetland peat soils. For this purpose, 34 samples of the 0-30, 30-60 and 60-90 cm layers were collected from peat soils in Germany, Israel, Poland, Slovenia, Sweden and the United Kingdom and analysed for P. Mean soil pH (CaCl2, 0.01 M) was 5.84, 5.51 and 5.47 in the 0-30, 30-60 and 60-90 cm layers, respectively. The P-DCaL was consistently about half the magnitude of either P-AL or P-Olsen. The efficiency of P extraction increased in the order P-DCaL < P-AL &LE; P-Olsen, with corresponding means (mg kg(-1)) for all soils (34 samples) of 15.32, 33.49 and 34.27 in 0-30 cm; 8.87, 17.30 and 21.46 in 30-60 cm; and 5.69, 14.00 and 21.40 in 60-90 cm. The means decreased with depth. When examining soils for each country separately, P-Olsen was relatively evenly distributed in the German, UK and Slovenian soils. P-Olsen was linearly correlated (r = 0.594, P = 0.0002) with pH, whereas the three P tests (except P-Olsen vs P-DCaL) significantly correlated with each other (P = 0.017850.0001). The strongest correlation (r = 0.617, P = 0.0001) was recorded for P-AL vs P-DCaL) and the two methods were inter-convertible using a regression equation: P-AL = -22.593 + 5.353 pH + 1.423 P-DCaL, R-2 = 0.550.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silicon release from rice straw and amorphous silica when shaken in solution with five Sri Lankan soils was studied indirectly using sorption isotherms and changes in concentration and directly using straw in dialysis bags examined using electron microscopy. The aim was to further our understanding of the processes and factors affecting the release of straw-Si in soils and its availability to rice. The soils (alfisols and ultisols) shaken with 0.1 M NaCl (5 g per 125 mL for 250 days) produced concentrations of 1 - 4 mg L-1 of monosilicic acid-Si. Amorphous silica added to these suspensions (36.5 mg, containing 17 mg Si) raised the concentrations to 20 - 40 mg L-1, and added rice straw (0.5 g, containing 17 mg Si) gave 10 - 25 mg L-1. Sorption isotherms (7 days equilibrations) were used to calculate from the concentrations the amounts of Si released ( 24 - 38% and 8 - 21%, respectively). Both materials gave about 40 mg L-1 of monosilicic acid-Si plus 30 mg L-1 of disilicic acid-Si when shaken in solution alone (5 g per 125 mL). Straw in dialysis bags ( 0.5 g per 25 mL in 0.1 M NaCl) was shaken in soil suspension ( 5 g per 100 mL) for 60 days. Similar concentrations and releases were measured to those obtained above. About one fifth of the mass of straw was lost by decomposition in the first 15 days. A chloroform treatment prevented decomposition, but Si release was unaffected. Disintegration continued throughout the experiments, with phytoliths being exposed and dissolved. Compared to the rate of release from straw into solution without soil, the release of Si into soil suspensions was increased during the first 20 days by adsorption on the soil, but was then reduced probably through the effect of Fe and Al on the phytolith surfaces. The extent of this blocking effect varied between soils and was not simply related to soil pH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The contribution of four types of secondary woodlands to Scottish invertebrate biodiversity was investigated for coniferous plantation forestry, riparian ash-alder woodlands, early successional deciduous woodlands and climax deciduous woodlands. Considerable variation in the type and intensity of management within these four woodland types existed. Adult Diptera from 21 families, representing diverse trophic and ecological guilds, were sampled from 31 woodlands in the Aberdeenshire region of northeast Scotland, between June and August 2001. Environmental differences between woodlands were recorded at each site using environmental parameters such as pH and organic matter content, vegetation characteristics, including percentage canopy cover and dominant field layer plant species. Multivariate ordination techniques detected significant responses in the Dipteran communities to soil type, organic matter content, soil pH, field layer plant species richness, dominant field layer plant species and percentage cover of Pteridium aquilinum. Responses in terms of Dipteran abundance, species richness, diversity and evenness were observed to soil type and dominant species of the field layer vegetation. The role of woodland type and management in diversifying Diptera communities is discussed with a view to maintain and possibly enhance Dipteran and other invertebrate communities in Scottish secondary woodlands. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The introduction of earthworms into soils contaminated with metals and metalloids has been suggested to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113 and 131 mg kg1 of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different ecological groups affected metals in the same way by increasing concentrations and free ion activities in leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by 267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading to release of organically bound elements. The degradation of organic matter also releases organic acids which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase the rate of a process that is already occurring. The impact of earthworms on metal mobility and availability should therefore be considered when inoculating earthworms into contaminated soils as new pathways to receptors may be created or the flow of metals and metalloids to receptors may be elevated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dissolution of CaCO3 granules secreted by earthworms in soil leaching columns was governed by soil pH and exchange sites available for Ca. Results indicate that granules could last for significant periods of time in soils and that, therefore, granules could be an important source of soil calcite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been suggested that sources of P could be used to remediate metal-contaminated soil. The toxicity of four potential P sources, potassium hydrogen phosphate (PHP), triple superphosphate (TSP), rock phosphate (RP) and raw bone meal (RBM) to Eisenia fetida was determined. The concentration of P that is statistically likely to kill 50% of the population (LC50) for PHP, TSP and RBM was determined in OECD acute toxicity tests. 14 day LC50s expressed as bulk P concentration lay in the range 3319–4272 mg kg−1 for PHP, 3107–3590 mg kg−1 for TSP and 1782–2196 mg kg−1 for RBM (ranges present the 95% confidence intervals). For PHP and TSP mortality was significantly impacted by the electrical conductivity of the treated soils. No consistent relationship existed between mortality and electrical conductivity, soil pH and available (Olsen) P across the PHP, TSP and RBM amendment types. In RP toxicity tests mortality was low and it was not possible to determine a LC50 value. Incineration of bone meal at temperatures between 200 and 300 ◦C, pre-washing the bone meal, co-amendment with 5% green waste compost and delaying introduction of earthworms after bone meal amendments by 21 days or more led to significant reductions in the bone meal toxicity. These results are consistent with the toxicity being associated with the release and/or degradation of a soluble organic component present in raw bone meal. Bone meal can be used as an earthworm-friendly remedial amendment in metal-contaminated soils but initial additions may have a negative effect on any earthworms surviving in the contaminated soil before the organic component in the bone meal degrades in the soil.