32 resultados para socio-environmental indicators
Resumo:
The Phosphorus Indicators Tool provides a catchment-scale estimation of diffuse phosphorus (P) loss from agricultural land to surface waters using the most appropriate indicators of P loss. The Tool provides a framework that may be applied across the UK to estimate P loss, which is sensitive not only to land use and management but also to environmental factors such as climate, soil type and topography. The model complexity incorporated in the P Indicators Tool has been adapted to the level of detail in the available data and the need to reflect the impact of changes in agriculture. Currently, the Tool runs on an annual timestep and at a 1 km(2) grid scale. We demonstrate that the P Indicators Tool works in principle and that its modular structure provides a means of accounting for P loss from one layer to the next, and ultimately to receiving waters. Trial runs of the Tool suggest that modelled P delivery to water approximates measured water quality records. The transparency of the structure of the P Indicators Tool means that identification of poorly performing coefficients is possible, and further refinements of the Tool can be made to ensure it is better calibrated and subsequently validated against empirical data, as it becomes available.
Resumo:
Answering many of the critical questions in conservation, development and environmental management requires integrating the social and natural sciences. However, understanding the array of available quantitative methods and their associated terminology presents a major barrier to successful collaboration. We provide an overview of quantitative socio-economic methods that distils their complexity into a simple taxonomy. We outline how each has been used in conjunction with ecological models to address questions relating to the management of socio-ecological systems. We review the application of social and ecological quantitative concepts to agro-ecology and classify the approaches used to integrate the two disciplines. Our review included all published integrated models from 2003 to 2008 in 27 journals that publish agricultural modelling research. Although our focus is on agro-ecology, many of the results are broadly applicable to other fields involving an interaction between human activities and ecology. We found 36 papers that integrated social and ecological concepts in a quantitative model. Four different approaches to integration were used, depending on the scale at which human welfare was quantified. Most models viewed humans as pure profit maximizers, both when calculating welfare and predicting behaviour. Synthesis and applications. We reached two main conclusions based on our taxonomy and review. The first is that quantitative methods that extend predictions of behaviour and measurements of welfare beyond a simple market value basis are underutilized by integrated models. The second is that the accuracy of prediction for integrated models remains largely unquantified. Addressing both problems requires researchers to reach a common understanding of modelling goals and data requirements during the early stages of a project.
Resumo:
The main objectives of this paper are to: firstly, identify key issues related to sustainable intelligent buildings (environmental, social, economic and technological factors); develop a conceptual model for the selection of the appropriate KPIs; secondly, test critically stakeholder's perceptions and values of selected KPIs intelligent buildings; and thirdly develop a new model for measuring the level of sustainability for sustainable intelligent buildings. This paper uses a consensus-based model (Sustainable Built Environment Tool- SuBETool), which is analysed using the analytical hierarchical process (AHP) for multi-criteria decision-making. The use of the multi-attribute model for priority setting in the sustainability assessment of intelligent buildings is introduced. The paper commences by reviewing the literature on sustainable intelligent buildings research and presents a pilot-study investigating the problems of complexity and subjectivity. This study is based upon a survey perceptions held by selected stakeholders and the value they attribute to selected KPIs. It is argued that the benefit of the new proposed model (SuBETool) is a ‘tool’ for ‘comparative’ rather than an absolute measurement. It has the potential to provide useful lessons from current sustainability assessment methods for strategic future of sustainable intelligent buildings in order to improve a building's performance and to deliver objective outcomes. Findings of this survey enrich the field of intelligent buildings in two ways. Firstly, it gives a detailed insight into the selection of sustainable building indicators, as well as their degree of importance. Secondly, it tesst critically stakeholder's perceptions and values of selected KPIs intelligent buildings. It is concluded that the priority levels for selected criteria is largely dependent on the integrated design team, which includes the client, architects, engineers and facilities managers.
Resumo:
The evaluation of EU policy in the area of rural land use management often encounters problems of multiple and poorly articulated objectives. Agri-environmental policy has a range of aims, including natural resource protection, biodiversity conservation and the protection and enhancement of landscape quality. Forestry policy, in addition to production and environmental objectives, increasingly has social aims, including enhancement of human health and wellbeing, lifelong learning, and the cultural and amenity value of the landscape. Many of these aims are intangible, making them hard to define and quantify. This article describes two approaches for dealing with such situations, both of which rely on substantial participation by stakeholders. The first is the Agri-Environment Footprint Index, a form of multi-criteria participatory approach. The other, applied here to forestry, has been the development of ‘multi-purpose’ approaches to evaluation, which respond to the diverse needs of stakeholders through the use of mixed methods and a broad suite of indicators, selected through a participatory process. Each makes use of case studies and involves stakeholders in the evaluation process, thereby enhancing their commitment to the programmes and increasing their sustainability. Both also demonstrate more ‘holistic’ approaches to evaluation than the formal methods prescribed in the EU Common Monitoring and Evaluation Framework.
Resumo:
We explore the contribution of socio-technical networks approaches to construction management research. These approaches are distinctive for their analysis of actors and objects as mutually constituted within socio-technical networks. They raise questions about the ways in which the content, meaning and use of technology is negotiated in practice, how particular technical configurations are elaborated in response to specific problems and why certain paths or solutions are adopted rather than others. We illustrate this general approach with three case studies: a historical study of the development of reinforced concrete in France, the UK and the US, the recent introduction of 3D-CAD software into four firms and an analysis of the uptake of environmental assessment technologies in the UK since 1990. In each we draw out the ways in which various technologies shaped and were shaped by different socio-technical networks. We conclude with a reflection on the contributions of socio-technical network analysis for more general issues including the study of innovation and analyses of context and power.
Resumo:
A radiocarbon-dated multiproxy palaeoenvironmental record from the Lower Thames Valley at Hornchurch Marshes has provided a reconstruction of the timing and nature of vegetation succession against a background of Holocene climate change, relative sea level movement and human activities. The investigation recorded widespread peat formation between c. 6300 and 3900 cal. yr BP (marine ‘regression’), succeeded by evidence for marine incursion. The multiproxy analyses of these sediments, comprising pollen, Coleoptera, diatoms, and plant and wood macrofossils, have indicated significant changes in both the wetland and dryland environment, including the establishment of Alnus (Alder) carr woodland, and the decline of both Ulmus (Elm; c. 5740 cal. yr BP) and Tilia (Lime; c. 5600 cal. yr BP, and 4160–3710 cal. yr BP). The beetle faunas from the peat also suggest a thermal climate similar to that of the present day. At c. 4900 cal. yr BP, Taxus (L.; Yew) woodland colonised the peatland forming a plant community that has no known modern analogue in the UK. The precise reason, or reasons, for this event remain unclear, although changes in peatland hydrology seem most likely. The growth of Taxus on peatland not only has considerable importance for our knowledge of the vegetation history of southeast England, and NW Europe generally, but also has wider implications for the interpretation of Holocene palaeobotanical records. At c. 3900 cal. yr BP, Taxus declined on the peatland surface during a period of major hydrological change (marine incursion), an event also strongly associated with the decline of dryland woodland taxa, including Tilia and Quercus, and the appearance of anthropogenic indicators.
Resumo:
Pesticide risk indicators provide simple support in the assessment of environmental and health risks from pesticide use, and can therefore inform policies to foster a sustainable interaction of agriculture with the environment. For their relative simplicity, indicators may be particularly useful under conditions of limited data availability and resources, such as in Less Developed Countries (LDCs). However, indicator complexity can vary significantly, in particular between those that rely on an exposure–toxicity ratio (ETR) and those that do not. In addition, pesticide risk indicators are usually developed for Western contexts, which might cause incorrect estimation in LDCs. This study investigated the appropriateness of seven pesticide risk indicators for use in LDCs, with reference to smallholding agriculture in Colombia. Seven farm-level indicators, among which 3 relied on an ETR (POCER, EPRIP, PIRI) and 4 on a non-ETR approach (EIQ, PestScreen, OHRI, Dosemeci et al., 2002), were calculated and then compared by means of the Spearman rank correlation test. Indicators were also compared with respect to key indicator characteristics, i.e. user friendliness and ability to represent the system under study. The comparison of the indicators in terms of the total environmental risk suggests that the indicators not relying on an ETR approach cannot be used as a reliable proxy for more complex, i.e. ETR, indicators. ETR indicators, when user-friendly, show a comparative advantage over non-ETR in best combining the need for a relatively simple tool to be used in contexts of limited data availability and resources, and for a reliable estimation of environmental risk. Non-ETR indicators remain useful and accessible tools to discriminate between different pesticides prior to application. Concerning the human health risk, simple algorithms seem more appropriate for assessing human health risk in LDCs. However, further research on health risk indicators and their validation under LDC conditions is needed.
Resumo:
A multi-proxy study of a Holocene sediment core (RF 93-30) from the western flank of the central Adriatic, in 77 m of water, reveals a sequence of changes in terrestrial vegetation, terrigenous sediment input and benthic fauna, as well as evidence for variations in sea surface temperature spanning most of the last 7000 yr. The chronology of sedimentation is based on several lines of evidence, including AMS 14C dates of foraminifera extracted from the core, palaeomagnetic secular variation, pollen indicators and dated tephra. The temporal resolution increases towards the surface and, for some of the properties measured, is sub-decadal for the last few centuries. The main changes recorded in vegetation, sedimentation and benthic foraminiferal assemblages appear to be directly related to human activity in the sediment source area, which includes the Po valley and the eastern flanks of the central and northern Appenines. The most striking episodes of deforestation and expanding human impact begin around 3600 BP (Late Bronze Age) and 700 BP (Medieval) and each leads to an acceleration in mass sedimentation and an increase in the proportion of terrigenous material, reflecting the response of surface processes to widespread forest clearance and cultivation. Although human impact appears to be the proximal cause of these changes, climatic effects may also have been important. During these periods, signs of stress are detectable in the benthic foram morphotype assemblages. Between these two periods of increased terrigeneous sedimentation there is smaller peak in sedimentation rate around 2400BP which is not associated with evidence for deforestation, shifts in the balance between terrigenous and authigenic sedimentation, or changes in benthic foraminifera. The mineral magnetic record provides a sensitive indicator of changing sediment sources: during forested periods of reduced terrigenous input it is dominated by authigenic bacterial magnetite, whereas during periods of increased erosion, anti-ferromagetic minerals (haematite and/or goethite) become more important, as well as both paramagnetic minerals and super-paramagnetic magnetite. Analysis of the alkenone, U37k′, record provides an indication of possible changes in sea surface temperature during the period, but it is premature to place too much reliance on these inferred changes until the indirect effects of past changes in the depth of the halocline and in circulation have been more fully evaluated. The combination of methods used and the results obtained illustrate the potential value of such high resolution near-shore marine sedimentary sequences for recording wide-scale human impact, documenting the effects of this on marine sedimentation and fauna and, potentially, disentangling evidence for human activities from that for past changes in climate.
Resumo:
The archaeological evidence compiled for Liguria has enabled the formulation of a comprehensive model of Neolithic social, technological and economic development (∼7800–5700 cal yrs BP). The model indicates that during the Early and Middle Neolithic (∼7800–6300 cal yrs BP; ‘Impressed Ware’ and ‘Square Mouthed’ pottery cultures) human activity mainly focussed on low (coastal) and mid-altitude areas. By the Late Neolithic (∼6300–5700 cal yrs BP; ‘Chassey’ culture) farming practices were taking place over a wider range of altitudes and involved transhumant pastoralism. Complementary environmental archaeological and palaeoecological records from caves, open-air sites, lakes and mires indicate that human activities had a more significant impact on the environment than previously thought. This included clearance, especially Abies, Ulmus, Fraxinus and Tilia, and woodland utilisation and management (e.g. leaf foddering), as well as cereal cultivation and animal husbandry. The influence of Middle Holocene climatic changes, especially from ∼7800 cal yrs BP, on the direction of vegetation changes and socio-economic developments during the Neolithic remain uncertain.
Resumo:
The Mediterranean is an important eco-region, however, it suffers from the lack of common procedures for the management and monitoring of its protected areas sustainability. The INNOVA project addresses this issue by developing a procedure namely PASEMP as well as tools which can assist Protected Areas Managers and responsible authorities to develop and implement a monitoring strategy for their areas. This handbook is proposed as a flexible tool, or a reference text which should be used in combination with the PASEMP guidelines to identify indicators, but also contains guidance on how to implement and report the monitoring strategy results.
Resumo:
The sustainable intelligent building is a building that has the best combination of environmental, social, economic and technical values. And its sustainability assessment is related with system engineering methods and multi-criteria decision-making. Therefore firstly, the wireless monitoring system of sustainable parameters for intelligent buildings is achieved; secondly, the indicators and key issues based on the “whole life circle” for sustainability of intelligent buildings are researched; thirdly, the sustainable assessment model identified on the structure entropy and fuzzy analytic hierarchy process is proposed.
Resumo:
High-resolution pollen and dinoflagellate cyst records from sediment core M72/5-25-GC1 were used to reconstruct vegetation dynamics in northern Anatolia and surface conditions of the Black Sea between 64 and 20 ka BP. During this period, the dominance of Artemisia in the pollen record indicates a steppe landscape and arid climate conditions. However, the concomitant presence of temperate arboreal pollen suggests the existence of glacial refugia in northern Anatolia. Long-term glacial vegetation dynamics reveal two major arid phases ~64–55 and 40–32 ka BP, and two major humid phases ~54–45 and 28–20 ka BP, correlating with higher and lower summer insolation, respectively. Dansgaard–Oeschger (D–O) cycles are clearly indicated by the 25-GC1 pollen record. Greenland interstadials are characterized by a marked increase in temperate tree pollen, indicating a spread of forests due to warm/wet conditions in northern Anatolia, whereas Greenland stadials reveal cold and arid conditions as indicated by spread of xerophytic biomes. There is evidence for a phase lag of ~500 to 1500 yr between initial warming and forest expansion, possibly due to successive changes in atmospheric circulation in the North Atlantic sector. The dominance of Pyxidinopsis psilata and Spiniferites cruciformis in the dinocyst record indicates brackish Black Sea conditions during the entire glacial period. The decrease of marine indicators (marine dinocysts, acritarchs) at ~54 ka BP and increase of freshwater algae (Pediastrum, Botryococcus) from 32 to 25 ka BP reveals freshening of the Black Sea surface water. This freshening is possibly related to humid phases in the region, to connection between Caspian Sea and Black Sea, to seasonal freshening by floating ice, and/or to closer position of river mouths due to low sea level. In the southern Black Sea, Greenland interstadials are clearly indicated by high dinocyst concentrations and calcium carbonate content, as a result of an increase in primary productivity. Heinrich events show a similar impact on the environment in the northern Anatolia/Black Sea region as Greenland stadials.
Resumo:
Vine-growing in the Less-Favoured Areas of Greece is facing multiple challenges that might lead to its abandonment. In an attempt to maintain rural populations, Rural Development Schemes have been created that offer the opportunity to rural households to maintain or expand their farming businesses including vine-growing. This paper stems from a study that used data from a cross-sectional survey of 204 farmers to investigate how farming systems and farmers’ perception of corruption, amongst other socio-economic factors, affected their decisions to continue vine-growing through participation in Rural Development Schemes, in three remote Less-Favoured Areas of Greece. The Theory of Planned Behaviour was used to frame the research problem with the assumption being that an individual’s intention to participate in a Scheme is based on their prior beliefs about it. Data from the survey were reduced and simplified by the use of non-linear principal component analysis. The ensuing variables were used in selectivity corrected ordered probit models to reveal farmers’ attitudes towards viticulture and rural development. It was found that economic factors, perceived corruption and farmers’ attitudes were significant determinants on whether to participate in the Schemes. The research findings highlight the important role of perceived corruption and the need for policies that facilitate farmers’ access to decision making centres.
Resumo:
To predict the response of aquatic ecosystems to future global climate change, data on the ecology and distribution of keystone groups in freshwater ecosystems are needed. In contrast to mid- and high-latitude zones, such data are scarce across tropical South America (Neotropics). We present the distribution and diversity of chironomid species using surface sediments of 59 lakes from the Andes to the Amazon (0.1–17°S and 64–78°W) within the Neotropics. We assess the spatial variation in community assemblages and identify the key variables influencing the distributional patterns. The relationships between environmental variables (pH, conductivity, depth, and sediment organic content), climatic data, and chironomid assemblages were assessed using multivariate statistics (detrended correspondence analysis and canonical correspondence analysis). Climatic parameters (temperature and precipitation) were most significant in describing the variance in chironomid assemblages. Temperature and precipitation are both predicted to change under future climate change scenarios in the tropical Andes. Our findings suggest taxa of Orthocladiinae, which show a preference to cold high-elevation oligotrophic lakes, will likely see range contraction under future anthropogenic-induced climate change. Taxa abundant in areas of high precipitation, such as Micropsectra and Phaenopsectra, will likely become restricted to the inner tropical Andes, as the outer tropical Andes become drier. The sensitivity of chironomids to climate parameters makes them important bio-indicators of regional climate change in the Neotropics. Furthermore, the distribution of chironomid taxa presented here is a vital first step toward providing urgently needed autecological data for interpreting fossil chironomid records of past ecological and climate change from the tropical Andes.