25 resultados para separated shear layer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waves with periods shorter than the inertial period exist in the atmosphere (as inertia-gravity waves) and in the oceans (as Poincaré and internal gravity waves). Such waves owe their origin to various mechanisms, but of particular interest are those arising either from local secondary instabilities or spontaneous emission due to loss of balance. These phenomena have been studied in the laboratory, both in the mechanically-forced and the thermally-forced rotating annulus. Their generation mechanisms, especially in the latter system, have not yet been fully understood, however. Here we examine short period waves in a numerical model of the rotating thermal annulus, and show how the results are consistent with those from earlier laboratory experiments. We then show how these waves are consistent with being inertia-gravity waves generated by a localised instability within the thermal boundary layer, the location of which is determined by regions of strong shear and downwelling at certain points within a large-scale baroclinic wave flow. The resulting instability launches small-scale inertia-gravity waves into the geostrophic interior of the flow. Their behaviour is captured in fully nonlinear numerical simulations in a finite-difference, 3D Boussinesq Navier-Stokes model. Such a mechanism has many similarities with those responsible for launching small- and meso-scale inertia-gravity waves in the atmosphere from fronts and local convection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions between shear-free turbulence in two regions (denoted as + and − on either side of a nearly flat horizontal interface are shown here to be controlled by several mechanisms, which depend on the magnitudes of the ratios of the densities, ρ+/ρ−, and kinematic viscosities of the fluids, μ+/μ−, and the root mean square (r.m.s.) velocities of the turbulence, u0+/u0−, above and below the interface. This study focuses on gas–liquid interfaces so that ρ+/ρ− ≪ 1 and also on where turbulence is generated either above or below the interface so that u0+/u0− is either very large or very small. It is assumed that vertical buoyancy forces across the interface are much larger than internal forces so that the interface is nearly flat, and coupling between turbulence on either side of the interface is determined by viscous stresses. A formal linearized rapid-distortion analysis with viscous effects is developed by extending the previous study by Hunt & Graham (J. Fluid Mech., vol. 84, 1978, pp. 209–235) of shear-free turbulence near rigid plane boundaries. The physical processes accounted for in our model include both the blocking effect of the interface on normal components of the turbulence and the viscous coupling of the horizontal field across thin interfacial viscous boundary layers. The horizontal divergence in the perturbation velocity field in the viscous layer drives weak inviscid irrotational velocity fluctuations outside the viscous boundary layers in a mechanism analogous to Ekman pumping. The analysis shows the following. (i) The blocking effects are similar to those near rigid boundaries on each side of the interface, but through the action of the thin viscous layers above and below the interface, the horizontal and vertical velocity components differ from those near a rigid surface and are correlated or anti-correlated respectively. (ii) Because of the growth of the viscous layers on either side of the interface, the ratio uI/u0, where uI is the r.m.s. of the interfacial velocity fluctuations and u0 the r.m.s. of the homogeneous turbulence far from the interface, does not vary with time. If the turbulence is driven in the lower layer with ρ+/ρ− ≪ 1 and u0+/u0− ≪ 1, then uI/u0− ~ 1 when Re (=u0−L−/ν−) ≫ 1 and R = (ρ−/ρ+)(v−/v+)1/2 ≫ 1. If the turbulence is driven in the upper layer with ρ+/ρ− ≪ 1 and u0+/u0− ≫ 1, then uI/u0+ ~ 1/(1 + R). (iii) Nonlinear effects become significant over periods greater than Lagrangian time scales. When turbulence is generated in the lower layer, and the Reynolds number is high enough, motions in the upper viscous layer are turbulent. The horizontal vorticity tends to decrease, and the vertical vorticity of the eddies dominates their asymptotic structure. When turbulence is generated in the upper layer, and the Reynolds number is less than about 106–107, the fluctuations in the viscous layer do not become turbulent. Nonlinear processes at the interface increase the ratio uI/u0+ for sheared or shear-free turbulence in the gas above its linear value of uI/u0+ ~ 1/(1 + R) to (ρ+/ρ−)1/2 ~ 1/30 for air–water interfaces. This estimate agrees with the direct numerical simulation results from Lombardi, De Angelis & Bannerjee (Phys. Fluids, vol. 8, no. 6, 1996, pp. 1643–1665). Because the linear viscous–inertial coupling mechanism is still significant, the eddy motions on either side of the interface have a similar horizontal structure, although their vertical structure differs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model for estimating the turbulent kinetic energy dissipation rate in the oceanic boundary layer, based on insights from rapid-distortion theory, is presented and tested. This model provides a possible explanation for the very high dissipation levels found by numerous authors near the surface. It is conceived that turbulence, injected into the water by breaking waves, is subsequently amplified due to its distortion by the mean shear of the wind-induced current and straining by the Stokes drift of surface waves. The partition of the turbulent shear stress into a shear-induced part and a wave-induced part is taken into account. In this picture, dissipation enhancement results from the same mechanism responsible for Langmuir circulations. Apart from a dimensionless depth and an eddy turn-over time, the dimensionless dissipation rate depends on the wave slope and wave age, which may be encapsulated in the turbulent Langmuir number La_t. For large La_t, or any Lat but large depth, the dissipation rate tends to the usual surface layer scaling, whereas when Lat is small, it is strongly enhanced near the surface, growing asymptotically as ɛ ∝ La_t^{-2} when La_t → 0. Results from this model are compared with observations from the WAVES and SWADE data sets, assuming that this is the dominant dissipation mechanism acting in the ocean surface layer and statistical measures of the corresponding fit indicate a substantial improvement over previous theoretical models. Comparisons are also carried out against more recent measurements, showing good order-of-magnitude agreement, even when shallow-water effects are important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mechanism for the enhancement of the viscous dissipation rate of turbulent kinetic energy (TKE) in the oceanic boundary layer (OBL) is proposed, based on insights gained from rapid-distortion theory (RDT). In this mechanism, which complements mechanisms purely based on wave breaking, preexisting TKE is amplified and subsequently dissipated by the joint action of a mean Eulerian wind-induced shear current and the Stokes drift of surface waves, the same elements thought to be responsible for the generation of Langmuir circulations. Assuming that the TKE dissipation rate epsilon saturates to its equilibrium value over a time of the order one eddy turnover time of the turbulence, a new scaling expression, dependent on the turbulent Langmuir number, is derived for epsilon. For reasonable values of the input parameters, the new expression predicts an increase of the dissipation rate near the surface by orders of magnitude compared with usual surface-layer scaling estimates, consistent with available OBL data. These results establish on firmer grounds a suspected connection between two central OBL phenomena: dissipation enhancement and Langmuir circulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid-distortion model of Hunt & Graham (1978) for the initial distortion of turbulence by a flat boundary is extended to account fully for viscous processes. Two types of boundary are considered: a solid wall and a free surface. The model is shown to be formally valid provided two conditions are satisfied. The first condition is that time is short compared with the decorrelation time of the energy-containing eddies, so that nonlinear processes can be neglected. The second condition is that the viscous layer near the boundary, where tangential motions adjust to the boundary condition, is thin compared with the scales of the smallest eddies. The viscous layer can then be treated using thin-boundary-layer methods. Given these conditions, the distorted turbulence near the boundary is related to the undistorted turbulence, and thence profiles of turbulence dissipation rate near the two types of boundary are calculated and shown to agree extremely well with profiles obtained by Perot & Moin (1993) by direct numerical simulation. The dissipation rates are higher near a solid wall than in the bulk of the flow because the no-slip boundary condition leads to large velocity gradients across the viscous layer. In contrast, the weaker constraint of no stress at a free surface leads to the dissipation rate close to a free surface actually being smaller than in the bulk of the flow. This explains why tangential velocity fluctuations parallel to a free surface are so large. In addition we show that it is the adjustment of the large energy-containing eddies across the viscous layer that controls the dissipation rate, which explains why rapid-distortion theory can give quantitatively accurate values for the dissipation rate. We also find that the dissipation rate obtained from the model evaluated at the time when the model is expected to fail actually yields useful estimates of the dissipation obtained from the direct numerical simulation at times when the nonlinear processes are significant. We conclude that the main role of nonlinear processes is to arrest growth by linear processes of the viscous layer after about one large-eddy turnover time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a self-consistent drift-kinetic simulation code, we investigate whether electron acceleration owing to shear Alfvén waves in the plasma sheet boundary layer is sufficient to cause auroral brightening in the ionosphere. The free parameters used in the simulation code are guided by in situ observations of wave and plasma parameters in the magnetosphere at distances >4 RE from the Earth. For the perpendicular wavelength used in the study, which maps to ∼4 km at 110 km altitude, there is a clear amplitude threshold which determines whether magnetospheric shear Alfvén waves above the classical auroral acceleration region can excite sufficient electrons to create the aurora. Previous studies reported wave amplitudes that easily exceed this threshold; hence, the results reported in this paper demonstrate that auroral acceleration owing to shear Alfvén waves can occur in the magnetosphere at distances >4 RE from the Earth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A morphological instability of a mushy layer due to a forced flow in the melt is analysed. The instability is caused by flow induced in the mushy layer by Bernoulli suction at the crests of a sinusoidally perturbed mush–melt interface. The flow in the mushy layer advects heat away from crests which promotes solidification. Two linear stability analyses are presented: the fundamental mechanism for instability is elucidated by considering the case of uniform flow of an inviscid melt; a more complete analysis is then presented for the case of a parallel shear flow of a viscous melt. The novel instability mechanism we analyse here is contrasted with that investigated by Gilpin et al. (1980) and is found to be more potent for the case of newly forming sea ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been known that the urban surface energy balance is different to that of a rural surface, and that heating of the urban surface after sunset gives rise to the Urban Heat Island (UHI). Less well known is how flow and turbulence structure above the urban surface are changed during different phases of the urban boundary layer (UBL). This paper presents new observations above both an urban and rural surface and investigates how much UBL structure deviates from classical behaviour. A 5-day, low wind, cloudless, high pressure period over London, UK, was chosen for analysis, during which there was a strong UHI. Boundary layer evolution for both sites was determined by the diurnal cycle in sensible heat flux, with an extended decay period of approximately 4 h for the convective UBL. This is referred to as the “Urban Convective Island” as the surrounding rural area was already stable at this time. Mixing height magnitude depended on the combination of regional temperature profiles and surface temperature. Given the daytime UHI intensity of 1.5∘C, combined with multiple inversions in the temperature profile, urban and rural mixing heights underwent opposite trends over the period, resulting in a factor of three height difference by the fifth day. Nocturnal jets undergoing inertial oscillations were observed aloft in the urban wind profile as soon as the rural boundary layer became stable: clear jet maxima over the urban surface only emerged once the UBL had become stable. This was due to mixing during the Urban Convective Island reducing shear. Analysis of turbulent moments (variance, skewness and kurtosis) showed “upside-down” boundary layer characteristics on some mornings during initial rapid growth of the convective UBL. During the “Urban Convective Island” phase, turbulence structure still resembled a classical convective boundary layer but with some influence from shear aloft, depending on jet strength. These results demonstrate that appropriate choice of Doppler lidar scan patterns can give detailed profiles of UBL flow. Insights drawn from the observations have implications for accuracy of boundary conditions when simulating urban flow and dispersion, as the UBL is clearly the result of processes driven not only by local surface conditions but also regional atmospheric structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long duration of the 2010 Eyjafjallajökull eruption provided a unique opportunity to measure a widely dispersed volcanic ash cloud. Layers of volcanic ash were observed by the European Aerosol Research Lidar Network with a mean depth of 1.2 km and standard deviation of 0.9 km. In this paper we evaluate the ability of the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) to simulate the observed ash layers and examine the processes controlling their depth. NAME simulates distal ash layer depths exceptionally well with a mean depth of 1.2 km and standard deviation of 0.7 km. The dominant process determining the depth of ash layers over Europe is the balance between the vertical wind shear (which acts to reduce the depth of the ash layers) and vertical turbulent mixing (which acts to deepen the layers). Interestingly, differential sedimentation of ash particles and the volcano vertical emission profile play relatively minor roles.