56 resultados para sensory analysis, utilization of byproduct
Resumo:
The current energy requirements system used in the United Kingdom for lactating dairy cows utilizes key parameters such as metabolizable energy intake (MEI) at maintenance (MEm), the efficiency of utilization of MEI for 1) maintenance, 2) milk production (k(l)), 3) growth (k(g)), and the efficiency of utilization of body stores for milk production (k(t)). Traditionally, these have been determined using linear regression methods to analyze energy balance data from calorimetry experiments. Many studies have highlighted a number of concerns over current energy feeding systems particularly in relation to these key parameters, and the linear models used for analyzing. Therefore, a database containing 652 dairy cow observations was assembled from calorimetry studies in the United Kingdom. Five functions for analyzing energy balance data were considered: straight line, two diminishing returns functions, (the Mitscherlich and the rectangular hyperbola), and two sigmoidal functions (the logistic and the Gompertz). Meta-analysis of the data was conducted to estimate k(g) and k(t). Values of 0.83 to 0.86 and 0.66 to 0.69 were obtained for k(g) and k(t) using all the functions (with standard errors of 0.028 and 0.027), respectively, which were considerably different from previous reports of 0.60 to 0.75 for k(g) and 0.82 to 0.84 for k(t). Using the estimated values of k(g) and k(t), the data were corrected to allow for body tissue changes. Based on the definition of k(l) as the derivative of the ratio of milk energy derived from MEI to MEI directed towards milk production, MEm and k(l) were determined. Meta-analysis of the pooled data showed that the average k(l) ranged from 0.50 to 0.58 and MEm ranged between 0.34 and 0.64 MJ/kg of BW0.75 per day. Although the constrained Mitscherlich fitted the data as good as the straight line, more observations at high energy intakes (above 2.4 MJ/kg of BW0.75 per day) are required to determine conclusively whether milk energy is related to MEI linearly or not.
Resumo:
Data from six studies with male broilers fed diets covering a wide range of energy and protein were used in the current two analyses. In the first analysis, five models, specifically re-parameterized for analysing energy balance data, were evaluated for their ability to determine metabolizable energy intake at maintenance and efficiency of utilization of metabolizable energy intake for producing gain. In addition to the straight line, two types of functional form were used. They were forms describing (i) diminishing returns behaviour (monomolecular and rectangular hyperbola) and (ii) sigmoidal behaviour with a fixed point of inflection (Gompertz and logistic). These models determined metabolizable energy requirement for maintenance to be in the range 437-573 kJ/kg of body weight/day depending on the model. The values determined for average net energy requirement for body weight gain varied from 7(.)9 to 11(.)2 kJ/g of body weight. These values show good agreement with previous studies. In the second analysis, three types of function were assessed as candidates for describing the relationship between body weight and cumulative metabolizable energy intake. The functions used were: (a) monomolecular (diminishing returns behaviour), (b) Gompertz (smooth sigmoidal behaviour with a fixed point of inflection) and (c) Lopez, France and Richards (diminishing returns and sigmoidal behaviour with a variable point of inflection). The results of this analysis demonstrated that equations capable of mimicking the law of diminishing returns describe accurately the relationship between body weight and cumulative metabolizable energy intake in broilers.
Resumo:
An atoxigenic strain of Penicillium camemberti was superficially inoculated on fermented sausages in an attempt to improve their sensory properties. The growth of this mould on the surface of the sausages resulted in an intense proteolysis and lipolysis, which caused an increase in the concentration of free amino acids, free fatty acids (FFA) and volatile compounds. Many of these were derived from amino acid catabolism and were responsible for the "ripened flavour", i.e. branched aldehydes and the corresponding alcohols, acids and esters. The development of the fungal mycelia on the surface of the sausages also protected lipids from oxidation, resulting in both lower 2-thiobarbituric acid (TBARS) values and lipid oxidation-derived compounds, such as aliphatic aldehydes and alcohols. The sensory analysis of superficially inoculated sausages showed clear improvements in odour and flavour and, as a consequence, in the overall quality of the sausages. Therefore, this strain is proposed as a potential starter culture for dry fermented sausage production. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
Three batches of oats were extruded under four combinations of process temperature (150 or 180 °C) and process moisture (14.5 and 18%). Two of the extrudates were evaluated by a sensory panel, and three were analyzed by GC-MS. Maillard reaction products, such as pyrazines, pyrroles, furans, and sulfur-containing compounds, were found in the most severely processed extrudates (high-temperature, low-moisture). These extrudates were also described by the assessors as having toasted cereal attributes. Lipid degradation products, such as alkanals, 2-alkenals, and 2,4-alkadienals, were found at much higher levels in the extrudates of the oat flour that had been debranned. It contained lower protein and fiber levels than the others and showed increased lipase activity. Extrudates from these samples also had significantly lower levels of Maillard reaction products that correlated, in the sensory analysis, with terms such as stale oil and oatmeal. Linoleic acid was added to a fourth oat flour to simulate the result of increased lipase activity, and GC-MS analysis showed both an increase in lipid degradation products and a decrease in Maillard reaction products.
Resumo:
In this study, differences at the genetic level of 37 Salmonella Enteritidis strains from five phage types (PTs) were compared using comparative genomic hybridization (CGH) to assess differences between PTs. There were approximately 400 genes that differentiated prevalent (4, 6, 8 and 13a) and sporadic (11) PTs, of which 35 were unique to prevalent PTs, including six plasmid-borne genes, pefA, B, C, D, srgC and rck, and four chromosomal genes encoding putative amino acid transporters. Phenotype array studies also demonstrated that strains from prevalent PTs were less susceptible to urea stress and utilized L-histidine, L-glutamine, L-proline, L-aspartic acid, gly-asn and gly-gln more efficiently than PT11 strains. Complementation of a PT11 strain with the transporter genes from PT4 resulted in a significant increase in utilization of the amino acids and reduced susceptibility to urea stress. In epithelial cell association assays, PT11 strains were less invasive than other prevalent PTs. Most strains from prevalent PTs were better biofilm formers at 37 degrees C than at 28 degrees C, whilst the converse was true for PT11 strains. Collectively, the results indicate that genetic and corresponding phenotypic differences exist between strains of the prevalent PTs 4, 6, 8 and 13a and non-prevalent PT11 strains that are likely to provide a selective advantage for strains from the former PTs and could help them to enter the food chain and cause salmonellosis.
Resumo:
Direct outdoor air cooling contributes a lot not only to the improvement of the indoor air quality but also to the energy saving. Its full use will reduce the water chiller’s running time especially in some stores where cooling load keeps much higher and longer than that in other buildings. A novel air-conditioning system named Combined Variable Air Volume system (CVAV), combining a normal AHU with a separate outdoor air supply system, was proposed firstly by the authors. The most attractive feature of the system is its full utilization of cooling capacity and freshness of outdoor air in the transition period of the year round. On the basis of the obtain of the dynamic cooling loads of the typical shopping malls in different four cities located in cold climates in China with the aid of DOE-2, the possibility of increasing the amount of outdoor air volume of CVAV system in the transition period instead of operating the water chillers was confirmed. Moreover, a new concept, Direct Outdoor Air Cooling Efficiency (DOACE), was defined as the ratio of cooling capacity of outdoor air to the water chiller, indicating the degree of outdoor air’s utilization. And the DOACE of the CVAV was calculated and compared with that of conventional all-air constant volume air-conditioning systems, the results showed that CVAV bear much more energy saving potential with the 10%~19% higher DOACE and it is a kind of energy efficient systems and can improve the indoor air quality as well.
Resumo:
The bitter taste elicited by dairy protein hydrolysates (DPH) is a renowned issue for their acceptability by consumers and therefore incorporation into foods. The traditional method of assessment of taste in foods is by sensory analysis but this can be problematic due to the overall unpleasantness of the samples. Thus, there is a growing interest into the use of electronic tongues (e-tongues) as an alternative method to quantify the bitterness in such samples. In the present study the response of the e-tongue to the standard bitter agent caffeine and a range of both casein and whey based hydrolysates was compared to that of a trained sensory panel. Partial least square regression (PLS) was employed to compare the response of the e-tongue and the sensory panel. There was strong correlation shown between the two methods in the analysis of caffeine (R2 of 0.98) and DPH samples with R2 values ranging from 0.94-0.99. This study exhibits potential for the e-tongue to be used in bitterness screening in DPHs to reduce the reliance on expensive and time consuming sensory panels.
Resumo:
The human gut is a complex ecosystem occupied by a diverse microbial community. Modulation of this microbiota impacts health and disease. The definitive way to investigate the impact of dietary intervention on the gut microbiota is a human trial. However, human trials are expensive and can be difficult to control; thus, initial screening is desirable. Utilization of a range of in vitro and in vivo models means that useful information can be gathered prior to the necessity for human intervention. This review discusses the benefits and limitations of these approaches.
Transcriptomic analysis of Enterohaemorrhagic Escherichia coli O157:H7 in response to plant extracts
Resumo:
Enterohaemorrhagic Escherichia coli (EHEC) are a group of food and contact-borne pathogens responsible for haemorrhagic colitis. The bacteria can be transmitted by contaminated meat, but importantly, also by plants. The bacteria can use plants as an alternative host, where they associate with both the leaves and the roots. Colonisation in the rhizosphere of plants is thought to be the main habitat for colonisation. Four different plant species, commonly associated with EHEC outbreaks, were infected with EHEC O157:H7 isolates Sakai and TUV 93-0 over ten days to assess the colonisation potential of the bacteria in both the phyllosphere and rhizosphere of plants. The rhizosphere was found to sustain a higher population level of bacteria over time in comparison to the phyllosphere, yet both strains were unable to utilize root exudates for growth. Global gene expression changes of EHEC O157:H7 strain Sakai were measured in response to plant extracts such as leaf lysates, root exudates and leaf cell wall polysaccharides from spinach cultivar Amazon and lettuce cultivar Salinas. Microarrays analysis showed a significant change in expression of 17 % of genes on exposure to leaf lysates of spinach. A more specific response was seen to spinach leaf cell wall polysaccharides with only a 1.5 % change. In contrast, when exposed to lettuce leaf cell wall polysaccharides a higher change of 4.8 % was seen. Genes that were differentially expressed belonged to multiple functional groups, including metabolism, indicating the utilization of plant-specific polysaccharides. Several areas of further investigation have been determined from this project, including the importance of culturing bacterial strains at a relevant temperature, the proposed lack of the type III secretion system in plant colonization by EHEC O157:H7 and the utilization of plant components for growth and persistence in the plant environment.
Resumo:
Two experiments were undertaken in which grass silage was used in conjunction with a series of different concentrate types designed to examine the effect of carbohydrate source, protein level and degradability on total dietary phosphorus (P) utilization with emphasis on P pollution. Twelve Holstein-Friesian dairy cows in early to mid-lactation were used in an incomplete changeover design with four periods consisting of 4 weeks each. Phosphorus intake ranged from 54 to 80 g/day and faecal P represented the principal route by which ingested P was disposed of by cows, with insignificant amounts being voided in urine. A positive linear relationship between faecal P and P intake was established. In Experiment 1, P utilization was affected by dietary carbohydrate type, with an associated output of 3.3 g faecal P/g milk P produced for all treatments except those utilizing low degradable starch and low protein supplements, where a mean value of 2.8 g faecal P/g milk P was observed. In Experiment 2, where two protein levels and three protein degradabilities were examined, the efficiency of P utilization for milk P production was not affected by either level or degradability of crude protein (CP) but a significant reduction in faecal P excretion due to lower protein and P intake was observed. In general, P utilization in Experiment 2 was substantially improved compared to the Experiment 1, with an associated output of 1.8 g faecal P/g milk P produced. The improved utilization of P in Experiment 2 could be due to lower P content of the diets offered and higher dry matter (DM) intake. For dairy cows weighing 600 kg, consuming 17-18 kg DM/day and producing about 25 kg milk, P excretion in faeces and hence P pollution to the environment might be minimized without compromising lactational performance by formulating diets to supply about 68 g P/day, which is close to recent published recommended requirements for P.
Resumo:
The vertebrate cranial sensory placodes are ectodermal embryonic patches that give rise to sensory receptor cells of the peripheral paired sense organs and to neurons in the cranial sensory ganglia. Their differentiation and the genetic pathways that underlay their development are now well understood. Their evolutionary history, however, has remained obscure. Recent molecular work, performed on close relatives of the vertebrates, demonstrated that some sensory placodes (namely the adenohypophysis, the olfactory, and accoustico-lateralis placodes) first evolved at the base of the chordate lineage, while others might be specific to vertebrates. Combined with morphological and cellular fate data, these results also suggest that the sensory placodes of the ancestor of all chordates differentiated into a wide range of structures, most likely to fit the lifestyle and environment of each species.
Resumo:
Recombination in Poliovirus vaccine strains is a very frequent phenomenon. In this report 23 polio/Sabin strains isolated from healthy vaccinees or from VAPP patients after OPV administration, were investigated in order to identify recombination sites from 2C to 3D regions of the poliovirus genome. RT-PCR, followed by Restriction Fragment Length Polymorphism (RFLP) screening analysis were applied in four distant genomic regions (5' UTR, VP1, 2C and 3C-3D) in order to detect any putative recombinant. The detected recombinants were sequenced from 2C to the end of the genome (3' UTR) and the exact recombination sites were determined with computational analysis. Five of the 23 isolated strains were recombinant in one genomic region, two of them in 2C, isolates EP16:S3/S2, EP23:S3/S1, two in 3D isolates EP6:S2/S1, EP12:S2/S1 and one in 3A isolate EP9:S2/Sl. Point mutations were found in strains EP3, EP6, EP9 and EP12. Recombination specific types and sites re-occurrence along with point mutations are discussed concerning the polioviruses evolution.
Molecular evidence from ascidians for the evolutionary origin of vertebrate cranial sensory placodes
Resumo:
Cranial sensory placodes are specialised areas of the head ectoderm of vertebrate embryos that contribute to the formation of the cranial sense organs and associated ganglia. Placodes are often considered a vertebrate innovation, and their evolution has been hypothesised as one key adaptation underlying the evolution of active predation by primitive vertebrates. Here, we review recent molecular evidence pertinent to understanding the evolutionary origin of placodes. The development of vertebrate placodes is regulated by numerous genes, including members of the Pax, Six, Eya, Fox, Phox, Neurogenin and Pou gene families. In the sea squirt Ciona intestinalis (a basal chordate and close relative of the vertebrates), orthologues of these genes are deployed in the development of the oral and atrial siphons, structures used for filter feeding by the sessile adult. Our interpretation of these findings is that vertebrate placodes and sea squirt siphon primordia have evolved from the same patches of specialised ectoderm present in the common ancestor of the chordates.
Resumo:
The electrochemistry of nanostructured electrodes is investigated using hydrodynamic modulated voltammetry (HMV). Here a liquid crystal templating process is used to produce a platinum modified electrode with a relatively high surface area (Roughness factor, Rf = 42.4). The electroreduction of molecular oxygen at a nanostructured platinum surface is used to demonstrate the ability of HMV to discriminate between Faradaic and non-Faradaic electrode reactions. The HMV approach shows that the reduction of molecular oxygen shows considerable hysteresis correlating with the formation and stripping of oxide species at the platinum surface. Without the HMV analysis it is difficult to discern the same detail under the conditions employed. In addition the detection limit of the apparatus is explored and shown, under ideal conditions, to be of the order of 45 nmol dm(-3) employing [Fe(CN)(6)](4-) as a test species. (C) 2009 Elsevier B.V. All rights reserved.