51 resultados para selection model
Resumo:
Global hydrological models (GHMs) model the land surface hydrologic dynamics of continental-scale river basins. Here we describe one such GHM, the Macro-scale - Probability-Distributed Moisture model.09 (Mac-PDM.09). The model has undergone a number of revisions since it was last applied in the hydrological literature. This paper serves to provide a detailed description of the latest version of the model. The main revisions include the following: (1) the ability for the model to be run for n repetitions, which provides more robust estimates of extreme hydrological behaviour, (2) the ability of the model to use a gridded field of coefficient of variation (CV) of daily rainfall for the stochastic disaggregation of monthly precipitation to daily precipitation, and (3) the model can now be forced with daily input climate data as well as monthly input climate data. We demonstrate the effects that each of these three revisions has on simulated runoff relative to before the revisions were applied. Importantly, we show that when Mac-PDM.09 is forced with monthly input data, it results in a negative runoff bias relative to when daily forcings are applied, for regions of the globe where the day-to-day variability in relative humidity is high. The runoff bias can be up to - 80% for a small selection of catchments but the absolute magnitude of the bias may be small. As such, we recommend future applications of Mac-PDM.09 that use monthly climate forcings acknowledge the bias as a limitation of the model. The performance of Mac-PDM.09 is evaluated by validating simulated runoff against observed runoff for 50 catchments. We also present a sensitivity analysis that demonstrates that simulated runoff is considerably more sensitive to method of PE calculation than to perturbations in soil moisture and field capacity parameters.
Resumo:
Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.
Resumo:
In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.
Resumo:
Background: Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network. Results: The ModSSEA method is found to be an effective model quality assessment program for ranking multiple models from many servers, however further accuracy can be gained by using the consensus approach of ModFOLD. The ModFOLD method is shown to significantly outperform the true MQAPs tested and is competitive with methods which make use of clustering or additional information from multiple servers. Several of the true MQAPs are also shown to add value to most individual fold recognition servers by improving model selection, when applied as a post filter in order to re-rank models. Conclusion: MQAPs should be benchmarked appropriately for the practical context in which they are intended to be used. Clustering based methods are the top performing MQAPs where many models are available from many servers; however, they often do not add value to individual fold recognition servers when limited models are available. Conversely, the true MQAP methods tested can often be used as effective post filters for re-ranking few models from individual fold recognition servers and further improvements can be achieved using a consensus of these methods.
Resumo:
Survival times for the Acacia mangium plantation in the Segaliud Lokan Project, Sabah, East Malaysia were analysed based on 20 permanent sample plots (PSPs) established in 1988 as a spacing experiment. The PSPs were established following a complete randomized block design with five levels of spacing randomly assigned to units within four blocks at different sites. The survival times of trees in years are of interest. Since the inventories were only conducted annually, the actual survival time for each tree was not observed. Hence, the data set comprises censored survival times. Initial analysis of the survival of the Acacia mangium plantation suggested there is block by spacing interaction; a Weibull model gives a reasonable fit to the replicate survival times within each PSP; but a standard Weibull regression model is inappropriate because the shape parameter differs between PSPs. In this paper we investigate the form of the non-constant Weibull shape parameter. Parsimonious models for the Weibull survival times have been derived using maximum likelihood methods. The factor selection for the parameters is based on a backward elimination procedure. The models are compared using likelihood ratio statistics. The results suggest that both Weibull parameters depend on spacing and block.
Resumo:
1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.
Resumo:
Supplier selection has a great impact on supply chain management. The quality of supplier selection also affects profitability of organisations which work in the supply chain. As suppliers can provide variety of services and customers demand higher quality of service provision, the organisation is facing challenges for making the right choice of supplier for the right needs. The existing methods for supplier selection, such as data envelopment analysis (DEA) and analytical hierarchy process (AHP) can automatically perform selection of competitive suppliers and further decide winning supplier(s). However, these methods are not capable of determining the right selection criteria which should be derived from the business strategy. An ontology model described in this paper integrates the strengths of DEA and AHP with new mechanisms which ensure the right supplier to be selected by the right criteria for the right customer's needs.
Resumo:
This paper is concerned with the selection of inputs for classification models based on ratios of measured quantities. For this purpose, all possible ratios are built from the quantities involved and variable selection techniques are used to choose a convenient subset of ratios. In this context, two selection techniques are proposed: one based on a pre-selection procedure and another based on a genetic algorithm. In an example involving the financial distress prediction of companies, the models obtained from ratios selected by the proposed techniques compare favorably to a model using ratios usually found in the financial distress literature.
Resumo:
An efficient model identification algorithm for a large class of linear-in-the-parameters models is introduced that simultaneously optimises the model approximation ability, sparsity and robustness. The derived model parameters in each forward regression step are initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning algorithm based on the basis pursuit that minimises the l(1) norm of the parameter estimate vector. The model subset selection cost function includes a D-optimality design criterion that maximises the determinant of the design matrix of the subset to ensure model robustness and to enable the model selection procedure to automatically terminate at a sparse model. The proposed approach is based on the forward OLS algorithm using the modified Gram-Schmidt procedure. Both the parameter tuning procedure, based on basis pursuit, and the model selection criterion, based on the D-optimality that is effective in ensuring model robustness, are integrated with the forward regression. As a consequence the inherent computational efficiency associated with the conventional forward OLS approach is maintained in the proposed algorithm. Examples demonstrate the effectiveness of the new approach.
Resumo:
This correspondence introduces a new orthogonal forward regression (OFR) model identification algorithm using D-optimality for model structure selection and is based on an M-estimators of parameter estimates. M-estimator is a classical robust parameter estimation technique to tackle bad data conditions such as outliers. Computationally, The M-estimator can be derived using an iterative reweighted least squares (IRLS) algorithm. D-optimality is a model structure robustness criterion in experimental design to tackle ill-conditioning in model Structure. The orthogonal forward regression (OFR), often based on the modified Gram-Schmidt procedure, is an efficient method incorporating structure selection and parameter estimation simultaneously. The basic idea of the proposed approach is to incorporate an IRLS inner loop into the modified Gram-Schmidt procedure. In this manner, the OFR algorithm for parsimonious model structure determination is extended to bad data conditions with improved performance via the derivation of parameter M-estimators with inherent robustness to outliers. Numerical examples are included to demonstrate the effectiveness of the proposed algorithm.
Resumo:
We propose a simple and computationally efficient construction algorithm for two class linear-in-the-parameters classifiers. In order to optimize model generalization, a forward orthogonal selection (OFS) procedure is used for minimizing the leave-one-out (LOO) misclassification rate directly. An analytic formula and a set of forward recursive updating formula of the LOO misclassification rate are developed and applied in the proposed algorithm. Numerical examples are used to demonstrate that the proposed algorithm is an excellent alternative approach to construct sparse two class classifiers in terms of performance and computational efficiency.
Resumo:
New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.
Resumo:
In this correspondence new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness via combined parameter regularization and new robust structural selective criteria. In parallel to parameter regularization, we use two classes of robust model selection criteria based on either experimental design criteria that optimizes model adequacy, or the predicted residual sums of squares (PRESS) statistic that optimizes model generalization capability, respectively. Three robust identification algorithms are introduced, i.e., combined A- and D-optimality with regularized orthogonal least squares algorithm, respectively; and combined PRESS statistic with regularized orthogonal least squares algorithm. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalization scheme in orthogonal least squares or regularized orthogonal least squares has been extended such that the new algorithms are computationally efficient. Numerical examples are included to demonstrate effectiveness of the algorithms.
Resumo:
A fundamental principle in practical nonlinear data modeling is the parsimonious principle of constructing the minimal model that explains the training data well. Leave-one-out (LOO) cross validation is often used to estimate generalization errors by choosing amongst different network architectures (M. Stone, "Cross validatory choice and assessment of statistical predictions", J. R. Stast. Soc., Ser. B, 36, pp. 117-147, 1974). Based upon the minimization of LOO criteria of either the mean squares of LOO errors or the LOO misclassification rate respectively, we present two backward elimination algorithms as model post-processing procedures for regression and classification problems. The proposed backward elimination procedures exploit an orthogonalization procedure to enable the orthogonality between the subspace as spanned by the pruned model and the deleted regressor. Subsequently, it is shown that the LOO criteria used in both algorithms can be calculated via some analytic recursive formula, as derived in this contribution, without actually splitting the estimation data set so as to reduce computational expense. Compared to most other model construction methods, the proposed algorithms are advantageous in several aspects; (i) There are no tuning parameters to be optimized through an extra validation data set; (ii) The procedure is fully automatic without an additional stopping criteria; and (iii) The model structure selection is directly based on model generalization performance. The illustrative examples on regression and classification are used to demonstrate that the proposed algorithms are viable post-processing methods to prune a model to gain extra sparsity and improved generalization.
Resumo:
A new probabilistic neural network (PNN) learning algorithm based on forward constrained selection (PNN-FCS) is proposed. An incremental learning scheme is adopted such that at each step, new neurons, one for each class, are selected from the training samples arid the weights of the neurons are estimated so as to minimize the overall misclassification error rate. In this manner, only the most significant training samples are used as the neurons. It is shown by simulation that the resultant networks of PNN-FCS have good classification performance compared to other types of classifiers, but much smaller model sizes than conventional PNN.