23 resultados para routine activity theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite many decades investigating scalp recordable 8–13-Hz (alpha) electroencephalographic activity, no consensus has yet emerged regarding its physiological origins nor its functional role in cognition. Here we outline a detailed, physiologically meaningful, theory for the genesis of this rhythm that may provide important clues to its functional role. In particular we find that electroencephalographically plausible model dynamics, obtained with physiological admissible parameterisations, reveals a cortex perched on the brink of stability, which when perturbed gives rise to a range of unanticipated complex dynamics that include 40-Hz (gamma) activity. Preliminary experimental evidence, involving the detection of weak nonlinearity in resting EEG using an extension of the well-known surrogate data method, suggests that nonlinear (deterministic) dynamics are more likely to be associated with weakly damped alpha activity. Thus rather than the “alpha rhythm” being an idling rhythm it may be more profitable to conceive it as a readiness rhythm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present evidence that large-scale spatial coherence of 40 Hz oscillations can emerge dynamically in a cortical mean field theory. The simulated synchronization time scale is about 150 ms, which compares well with experimental data on large-scale integration during cognitive tasks. The same model has previously provided consistent descriptions of the human EEG at rest, with tranquilizers, under anesthesia, and during anesthetic-induced epileptic seizures. The emergence of coherent gamma band activity is brought about by changing just one physiological parameter until cortex becomes marginally unstable for a small range of wavelengths. This suggests for future study a model of dynamic computation at the edge of cortical stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anesthetic and analgesic agents act through a diverse range of pharmacological mechanisms. Existing empirical data clearly shows that such "microscopic" pharmacological diversity is reflected in their "macroscopic" effects on the human electroencephalogram (EEG). Based on a detailed mesoscopic neural field model we theoretically posit that anesthetic induced EEG activity is due to selective parametric changes in synaptic efficacy and dynamics. Specifically, on the basis of physiologically constrained modeling, it is speculated that the selective modification of inhibitory or excitatory synaptic activity may differentially effect the EEG spectrum. Such results emphasize the importance of neural field theories of brain electrical activity for elucidating the principles whereby pharmacological agents effect the EEG. Such insights will contribute to improved methods for monitoring depth of anesthesia using the EEG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The slow advective-timescale dynamics of the atmosphere and oceans is referred to as balanced dynamics. An extensive body of theory for disturbances to basic flows exists for the quasi-geostrophic (QG) model of balanced dynamics, based on wave-activity invariants and nonlinear stability theorems associated with exact symmetry-based conservation laws. In attempting to extend this theory to the semi-geostrophic (SG) model of balanced dynamics, Kushner & Shepherd discovered lateral boundary contributions to the SG wave-activity invariants which are not present in the QG theory, and which affect the stability theorems. However, because of technical difficulties associated with the SG model, the analysis of Kushner & Shepherd was not fully nonlinear. This paper examines the issue of lateral boundary contributions to wave-activity invariants for balanced dynamics in the context of Salmon's nearly geostrophic model of rotating shallow-water flow. Salmon's model has certain similarities with the SG model, but also has important differences that allow the present analysis to be carried to finite amplitude. In the process, the way in which constraints produce boundary contributions to wave-activity invariants, and additional conditions in the associated stability theorems, is clarified. It is shown that Salmon's model possesses two kinds of stability theorems: an analogue of Ripa's small-amplitude stability theorem for shallow-water flow, and a finite-amplitude analogue of Kushner & Shepherd's SG stability theorem in which the ‘subsonic’ condition of Ripa's theorem is replaced by a condition that the flow be cyclonic along lateral boundaries. As with the SG theorem, this last condition has a simple physical interpretation involving the coastal Kelvin waves that exist in both models. Salmon's model has recently emerged as an important prototype for constrained Hamiltonian balanced models. The extent to which the present analysis applies to this general class of models is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dependency of the blood oxygenation level dependent (BOLD) signal on underlying hemodynamics is not well understood. Building a forward biophysical model of this relationship is important for the quantitative estimation of the hemodynamic changes and neural activity underlying functional magnetic resonance imaging (fMRI) signals. We have developed a general model of the BOLD signal which can model both intra- and extravascular signals for an arbitrary tissue model across a wide range of imaging parameters. The model of the BOLD signal was instantiated as a look-up-table (LuT), and was verified against concurrent fMRI and optical imaging measurements of activation induced hemodynamics. Magn Reson Med, 2008. © 2008 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the generally positive contribution of supply management capabilities to firm performance their respective routines require more depth of assessment. Using the resource-based view we examine four routines bundles comprising ostensive and performative aspects of supply management capability – supply management integration, coordinated sourcing, collaboration management and performance assessment. Using structural equation modelling we measure supply management capability empirically as a second-order latent variable and estimate its effect on a series of financial and operational performance measures. The routines-based approach allows us to demonstrate a different, more fine-grained approach for assessing consistent bundles of homogeneous patterns of activity across firms. The results suggest supply management capability is formed of internally consistent routine bundles, which are significantly related to financial performance, mediated by operational performance. Our results confirm an indirect effect of firm performance for ‘core’ routines forming the architecture of a supply management capability. Supply management capability primarily improves the operational performance of the business, which is subsequently translated into improved financial performance. The study is significant for practice as it offers a different view about the face-valid rationale of supply management directly influencing firm financial performance. We confound this assumption, prompting caution when placing too much importance on directly assessing supply management capability using financial performance of the business.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The term neural population models (NPMs) is used here as catchall for a wide range of approaches that have been variously called neural mass models, mean field models, neural field models, bulk models, and so forth. All NPMs attempt to describe the collective action of neural assemblies directly. Some NPMs treat the densely populated tissue of cortex as an excitable medium, leading to spatially continuous cortical field theories (CFTs). An indirect approach would start by modelling individual cells and then would explain the collective action of a group of cells by coupling many individual models together. In contrast, NPMs employ collective state variables, typically defined as averages over the group of cells, in order to describe the population activity directly in a single model. The strength and the weakness of his approach are hence one and the same: simplification by bulk. Is this justified and indeed useful, or does it lead to oversimplification which fails to capture the pheno ...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared with younger adults, older adults have a relative preference to attend to and remember positive over negative information. This is known as the “positivity effect,” and researchers have typically evoked socioemotional selectivity theory to explain it. According to socioemotional selectivity theory, as people get older they begin to perceive their time left in life as more limited. These reduced time horizons prompt older adults to prioritize achieving emotional gratification and thus exhibit increased positivity in attention and recall. Although this is the most commonly cited explanation of the positivity effect, there is currently a lack of clear experimental evidence demonstrating a link between time horizons and positivity. The goal of the current research was to address this issue. In two separate experiments, we asked participants to complete a writing activity, which directed them to think of time as being either limited or expansive (Experiments 1 and 2) or did not orient them to think about time in a particular manner (Experiment 2). Participants were then shown a series of emotional pictures, which they subsequently tried to recall. Results from both studies showed that regardless of chronological age, thinking about a limited future enhanced the relative positivity of participants’ recall. Furthermore, the results of Experiment 2 showed that this effect was not driven by changes in mood. Thus, the fact that older adults’ recall is typically more positive than younger adults’ recall may index naturally shifting time horizons and goals with age.