227 resultados para roof-top wind turbines


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DAPPLE (Dispersion of Air Pollutants and their Penetration into the Local Environment) project seeks to characterise near-field urban atmospheric dispersion using a multidisciplinary approach. In this paper we report on the first tracer dispersion experiment carried out in May 2003. Results of concurrent meteorological measurements are presented. Variations of receptor tracer concentration with time are presented. Meteorological observations suggest that in-street channelling and flow-switching at intersections take place. A comparison between roof top and surface measurements suggest that rapid vertical mixing occurs, and a comparison between a simple dispersion model and maximum concentrations observed are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Almost all the electricity currently produced in the UK is generated as part of a centralised power system designed around large fossil fuel or nuclear power stations. This power system is robust and reliable but the efficiency of power generation is low, resulting in large quantities of waste heat. The principal aim of this paper is to investigate an alternative concept: the energy production by small scale generators in close proximity to the energy users, integrated into microgrids. Microgrids—de-centralised electricity generation combined with on-site production of heat—bear the promise of substantial environmental benefits, brought about by a higher energy efficiency and by facilitating the integration of renewable sources such as photovoltaic arrays or wind turbines. By virtue of good match between generation and load, microgrids have a low impact on the electricity network, despite a potentially significant level of generation by intermittent energy sources. The paper discusses the technical and economic issues associated with this novel concept, giving an overview of the generator technologies, the current regulatory framework in the UK, and the barriers that have to be overcome if microgrids are to make a major contribution to the UK energy supply. The focus of this study is a microgrid of domestic users powered by small Combined Heat and Power generators and photovoltaics. Focusing on the energy balance between the generation and load, it is found that the optimum combination of the generators in the microgrid- consisting of around 1.4 kWp PV array per household and 45% household ownership of micro-CHP generators- will maintain energy balance on a yearly basis if supplemented by energy storage of 2.7 kWh per household. We find that there is no fundamental technological reason why microgrids cannot contribute an appreciable part of the UK energy demand. Indeed, an estimate of cost indicates that the microgrids considered in this study would supply electricity at a cost comparable with the present electricity supply if the current support mechanisms for photovoltaics were maintained. Combining photovoltaics and micro-CHP and a small battery requirement gives a microgrid that is independent of the national electricity network. In the short term, this has particular benefits for remote communities but more wide-ranging possibilities open up in the medium to long term. Microgrids could meet the need to replace current generation nuclear and coal fired power stations, greatly reducing the demand on the transmission and distribution network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ships and wind turbines generate noise, which can have a negative impact on marine mammal populations by scaring animals away. Effective modelling of how this affects the populations has to take account of the location and timing of disturbances. Here we construct an individual-based model of harbour porpoises in the Inner Danish Waters. Individuals have their own energy budgets constructed using established principles of physiological ecology. Data are lacking on the spatial distribution of food which is instead inferred from knowledge of time-varying porpoise distributions. The model produces plausible patterns of population dynamics and matches well the age distribution of porpoises caught in by-catch. It estimates the effect of existing wind farms as a 10% reduction in population size when food recovers fast (after two days). Proposed new wind farms and ships do not result in further population declines. The population is however sensitive to variations in mortality resulting from by-catch and to the speed at which food recovers after being depleted. If food recovers slowly the effect of wind turbines becomes negligible, whereas ships are estimated to have a significant negative impact on the population. Annual by-catch rates ≥10% lead to monotonously decreasing populations and to extinction, and even the estimated by-catch rate from the adjacent area (approximately 4.1%) has a strong impact on the population. This suggests that conservation efforts should be more focused on reducing by-catch in commercial gillnet fisheries than on limiting the amount of anthropogenic noise. Individual-based models are unique in their ability to take account of the location and timing of disturbances and to show their likely effects on populations. The models also identify deficiencies in the existing database and can be used to set priorities for future field research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High quality wind measurements in cities are needed for numerous applications including wind engineering. Such data-sets are rare and measurement platforms may not be optimal for meteorological observations. Two years' wind data were collected on the BT Tower, London, UK, showing an upward deflection on average for all wind directions. Wind tunnel simulations were performed to investigate flow distortion around two scale models of the Tower. Using a 1:160 scale model it was shown that the Tower causes a small deflection (ca. 0.5°) compared to the lattice on top on which the instruments were placed (ca. 0–4°). These deflections may have been underestimated due to wind tunnel blockage. Using a 1:40 model, the observed flow pattern was consistent with streamwise vortex pairs shed from the upstream lattice edge. Correction factors were derived for different wind directions and reduced deflection in the full-scale data-set by <3°. Instrumental tilt caused a sinusoidal variation in deflection of ca. 2°. The residual deflection (ca. 3°) was attributed to the Tower itself. Correction of the wind-speeds was small (average 1%) therefore it was deduced that flow distortion does not significantly affect the measured wind-speeds and the wind climate statistics are reliable.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intense extra-tropical cyclones are often associated with strong winds, heavy precipitation and socio-economic impacts. Over southwestern Europe, such storms occur less often, but still cause high economic losses. We characterise the largescale atmospheric conditions and cyclone tracks during the top-100 potential losses over Iberia associated with wind events. Based on 65 years of reanalysis data,events are classified into four groups: (i) cyclone tracks crossing over Iberia on the event day (“Iberia”), (ii) cyclones crossing further north, typically southwest of the British Isles (“North”), (iii) cyclones crossing southwest to northeast near the northwest tip of Iberia (“West”), and (iv) so called “Hybrids”, characterised by a strong pressure gradient over Iberia due to the juxtaposition of low and high pressure centres. Generally, “Iberia” events are the most frequent (31% to 45% for top-100 vs.top-20), while “West” events are rare (10% to 12%). 70% of the events were primarily associated with a cyclone. Multi-decadal variability in the number of events is identified. While the peak in recent years is quite prominent, other comparably stormy periods occurred in the 1960s and 1980s. This study documents that damaging wind storms over Iberia are not rare events, and their frequency of occurrence undergoes strong multi-decadal variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses experimental and theoretical investigations and Computational Fluid Dynamics (CFD) modelling considerations to evaluate the performance of a square section wind catcher system connected to the top of a test room for the purpose of natural ventilation. The magnitude and distribution of pressure coefficients (C-p) around a wind catcher and the air flow into the test room were analysed. The modelling results indicated that air was supplied into the test room through the wind catcher's quadrants with positive external pressure coefficients and extracted out of the test room through quadrants with negative pressure coefficients. The air flow achieved through the wind catcher depends on the speed and direction of the wind. The results obtained using the explicit and AIDA implicit calculation procedures and CFX code correlate relatively well with the experimental results at lower wind speeds and with wind incidents at an angle of 0 degrees. Variation in the C-p and air flow results were observed particularly with a wind direction of 45 degrees. The explicit and implicit calculation procedures were found to be quick and easy to use in obtaining results whereas the wind tunnel tests were more expensive in terms of effort, cost and time. CFD codes are developing rapidly and are widely available especially with the decreasing prices of computer hardware. However, results obtained using CFD codes must be considered with care, particularly in the absence of empirical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-open street roofs protect pedestrians from intense sunshine and rains. Their effects on natural ventilation of urban canopy layers (UCL) are less understood. This paper investigates two idealized urban models consisting of 4(2×2) or 16(4×4) buildings under a neutral atmospheric condition with parallel (0°) or non-parallel (15°,30°,45°) approaching wind. The aspect ratio (building height (H) / street width (W)) is 1 and building width is B=3H. Computational fluid dynamic (CFD) simulations were first validated by experimental data, confirming that standard k-ε model predicted airflow velocity better than RNG k-ε model, realizable k–ε model and Reynolds stress model. Three ventilation indices were numerically analyzed for ventilation assessment, including flow rates across street roofs and openings to show the mechanisms of air exchange, age of air to display how long external air reaches a place after entering UCL, and purging flow rate to quantify the net UCL ventilation capacity induced by mean flows and turbulence. Five semi-open roof types are studied: Walls being hung above street roofs (coverage ratio λa=100%) at z=1.5H, 1.2H, 1.1H ('Hung1.5H', 'Hung1.2H', 'Hung1.1H' types); Walls partly covering street roofs (λa=80%) at z=H ('Partly-covered' type); Walls fully covering street roofs (λa=100%) at z=H ('Fully-covered' type).They basically obtain worse UCL ventilation than open street roof type due to the decreased roof ventilation. 'Hung1.1H', 'Hung1.2H', 'Hung1.5H' types are better designs than 'Fully-covered' and 'Partly-covered' types. Greater urban size contains larger UCL volume and requires longer time to ventilate. The methodologies and ventilation indices are confirmed effective to quantify UCL ventilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transport of pollution and heatout of streets into the boundary layer above is not currently understood and so fluxes cannot be quantified. Scalar concentration within the street is determined by the flux out of it and so quantifying fluxes for turbulent flow over a rough urban surface is essential. We have developed a naphthalene sublimation technique to measure transfer from a two-dimensional street canyon in a wind tunnel for the case of flow perpendicular to the street. The street was coated with naphthalene, which sublimes at room temperature, so that the vapour represented the scalar source. The transfer velocity wT relates the flux out of the canyon to the concentration within it and is shown to be linearly related to windspeed above the street. The dimensionless transfer coefficient wT/Uδ represents the ventilation efficiency of the canyon (here, wT is a transfer velocity,Uδ is the wind speed at the boundary-layer top). Observed values are between 1.5 and 2.7 ×10-3 and, for the case where H/W→0 (ratio of buildingheight to street width), values are in the same range as estimates of transfer from a flat plate, giving confidence that the technique yields accurate values for street canyon scalar transfer. wT/Uδ varies with aspect ratio (H/W), reaching a maximum in the wake interference regime (0.3 < H/W < 0.65). However, when upstream roughness is increased, the maximum in wT/Uδ reduces, suggesting that street ventilation is less sensitive to H/W when the flow is in equilibrium with the urban surface. The results suggest that using naphthalene sublimation with wind-tunnel models of urban surfaces can provide a direct measure of area-averaged scalar fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T /U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness