41 resultados para riparian zone
Resumo:
The aim of this study is to analyse the vascular flora and the local climate along an altitudinal gradient in the Lefka Ori massif Crete and to evaluate the potential effects of climate change on the plant diversity of the sub-alpine and alpine zones. It provides a quantitative/qualitative analysis of vegetation-environment relationships for four summits along an altitude gradient on the Lefka Ori massif Crete (1664-2339 m). The GLORIA multi-summit approach was used to provide vegetation and floristic data together with temperature records for every summit. Species richness and species turnover was calculated together with floristic similarity between the summits. 70 species were recorded, 20 of which were endemic, belonging to 23 different families. Cretan endemics dominate at these high altitudes. Species richness and turnover decreased with altitude. The two highest summits showed greater floristic similarity. Only 20% of the total flora recorded reaches the highest summit while 10% is common among summits. Overall there was a 4.96 degrees C decrease in temperature along the 675 m gradient. Given a scenario of temperature increase the ecotone between the sub-alpine and alpine zone would be likely to have the greatest species turnover. Southern exposures are likely to be invaded first by thermophilous species while northern exposures are likely to be more resistant to changes. Species distribution shifts will also depend on habitat availability. Many, already threatened, local endemic species will be affected first.
Resumo:
The ascidian Ciona intestinalis, a marine invertebrate chordate, is an emerging model system for developmental and evolutionary studies. The endostyle, one of the characteristic organs of ascidians, is a pharyngeal structure with iodine-concentrating and peroxidase activities and is therefore considered to be homologous to the follicular thyroid of higher vertebrates. We have previously reported that a limited part of the endostyle (zone VII) is marked by the expression of orthologs of the thyroid peroxidase (TPO) and thyroid transcription factor-2 (TTF-2/FoxE) genes. In this study, we have identified the Ciona homolog of NADPH oxidase/peroxidase (Duox), which provides hydrogen peroxide (H2O2) for iodine metabolism by TPO in the vertebrate thyroid. Expression patterns assessed by in situ hybridization have revealed that Ciona Duox (Ci-Duox) is predominantly expressed in the dorsal part of zone VII of the endostyle. Furthermore, two-color fluorescent in situ hybridization with Ci-Duox and Ciona TPO (CiTPO) has revealed that the ventral boundary of the Ci-Duox domain of expression is more dorsal than that of CiTPO. We have also characterized several genes, such as Ci-Fgf8/17/18, 5HT7, and Ci-NK4, which are predominantly expressed in the ventral part of zone VII, in a region complementary to the Ci-Duox expression domain. These observations suggest that, at the molecular level, zone VII has a complex organization that might have some impact on the specification of cell types and functions in this thyroid-equivalent element of the ascidian endostyle.
Resumo:
Tomato plants (Lycopersicon esculentum Mill. 'DRK') were grown hydroponically in two experiments to determine the effects of nutrient concentration and distribution in the root zone on yield, quality and blossom end rot (BER). The plants were grown in rockwool with their root systems divided into two portions. Each portion was irrigated with nutrient solutions with either the same or different electrical conductivity (EC) in the range 0 to 6 dS m(-1). In both experiments, fruit yields decreased as EC increased from moderate to high when solutions of equal concentration were applied to both portions of the root system. However, higher yields were obtained when a solution with high EC was applied to one portion of the root system and a solution of low EC to the other portion. For example, the fresh weight of mature fruits in the 6/6 treatment was only 20% that of the 3/3 treatment but the 6/0 treatment had a yield that was 40% higher. The reduction in yield in the high EC treatments was due to an increase in the number of fruits with BER and smaller fruit size. BER increased from 12% to 88% of total fruits as EC increased from 6/0 to 6/6 and fruit length decreased from 67 mm to 52 mm. Fruit quality (expressed as titratable acidity and soluble solids) increased as EC increased. In summary, high yields of high quality tomatoes with minimal incidence of BER were obtained when one portion of the root system was supplied with a solution of high EC and the other portion with a solution of moderate or zero EC.
Resumo:
Tomato plants ( Lycopersicon esculentum Mill. var. DRK) were grown hydroponically to determine the effect of an uneven distribution of nutrients in the root zone on blossomend rot (BER) and Ca and K concentrations in the fruits. The plants were grown in rockwool with their root system divided into two portions. Each portion was irrigated with nutrient solutions with either the same or the different electrical conductivity (EC) in the range 0 to 6 dS m(-1). Solutions with high EC supplied to both sides of the root system significantly increased the incidence of BER. However, when only water or a solution of low EC was supplied to one portion, BER was reduced by 80%. Fruit yields were significantly higher ( P < 0.01) for plants that received solutions of the uneven EC treatments (6/0 or 4.5/0 EC treatment). Plants supplied with solutions of uneven EC generally had higher leaf and fruit concentrations of Ca but lower concentrations of K than those supplied with solutions of high EC. There was no difference in Ca concentration at the distal end of young fruits of the uneven EC treatment but it was reduced in the high EC treatments. The concentration of K in the mature fruits of the uneven EC treatments was lower than that of the high EC treatments and higher or similar that of the 3/3 or 2.5/2.5 EC treatments ( controls). A clear relationship was found between the incidence of BER and the exudation rate. High rate of xylem exudation was observed in the uneven EC treatments. Reduction of BER in the uneven EC treatments is most likely to be the effect of high exudation rate on Ca status in the young fruits. It was concluded that high EC of solution had positive effects on Ca concentration and incidence of BER provided that nutrient solution with low EC or water is supplied to the one portion of the root system.
Resumo:
Proteolysis of Serpa cheese produced traditionally (B) and semi-industrially (C) was evaluated for the first time by determination of nitrogen content and capillary zone electrophoresis (CZE). A citrate dispersion of cheese was fractionated to determine the nitrogen in pH 4.4, trichloroacetic and phosphotungstic acid soluble fractions (pH 4.4-SN, TCA-SN and PTA-SN, respectively). The pH 4.4-SN was significantly higher for B ( P < 0.001), while TCA-SN was significantly higher for C ( P < 0.001). PTA-SN was also higher for C but at 60 days ripening no significant difference was found between B and C. Degradation of alpha(s1) - and beta-caseins evaluated by CZE was in good agreement with the maturation index (pH 4.4-SN/TN).
Resumo:
Recent literature has described a “transition zone” between the average top of deep convection in the Tropics and the stratosphere. Here transport across this zone is investigated using an offline trajectory model. Particles were advected by the resolved winds from the European Centre for Medium-Range Weather Forecasts reanalyses. For each boreal winter clusters of particles were released in the upper troposphere over the four main regions of tropical deep convection (Indonesia, central Pacific, South America, and Africa). Most particles remain in the troposphere, descending on average for every cluster. The horizontal components of 5-day trajectories are strongly influenced by the El Niño–Southern Oscillation (ENSO), but the Lagrangian average descent does not have a clear ENSO signature. Tropopause crossing locations are first identified by recording events when trajectories from the same release regions cross the World Meteorological Organization lapse rate tropopause. Most crossing events occur 5–15 days after release, and 30-day trajectories are sufficiently long to estimate crossing number densities. In a further two experiments slight excursions across the lapse rate tropopause are differentiated from the drift deeper into the stratosphere by defining the “tropopause zone” as a layer bounded by the average potential temperature of the lapse rate tropopause and the profile temperature minimum. Transport upward across this zone is studied using forward trajectories released from the lower bound and back trajectories arriving at the upper bound. Histograms of particle potential temperature (θ) show marked differences between the transition zone, where there is a slow spread in θ values about a peak that shifts slowly upward, and the troposphere below 350 K. There forward trajectories experience slow radiative cooling interspersed with bursts of convective heating resulting in a well-mixed distribution. In contrast θ histograms for back trajectories arriving in the stratosphere have two distinct peaks just above 300 and 350 K, indicating the sharp change from rapid convective heating in the well-mixed troposphere to slow ascent in the transition zone. Although trajectories slowly cross the tropopause zone throughout the Tropics, all three experiments show that most trajectories reaching the stratosphere from the lower troposphere within 30 days do so over the west Pacific warm pool. This preferred location moves about 30°–50° farther east in an El Niño year (1982/83) and about 30° farther west in a La Niña year (1988/89). These results could have important implications for upper-troposphere–lower-stratosphere pollution and chemistry studies.
Resumo:
Voluminous rhyolitic eruptions from Toba, Indonesia, and Taupo Volcanic Zone (TVZ), New Zealand, have dispersed volcanic ash over vast areas in the late Quaternary. The ~74 ka Youngest Toba Tuff (YTT) eruption deposited ash over the Bay of Bengal and the Indian subcontinent to the west. The ~340 ka Whakamaru eruption (TVZ) deposited the widespread Rangitawa Tephra, dominantly to the southeast (in addition to occurrences northwest of vent), extending across the landmass of New Zealand, and the South Pacific Ocean and Tasman Sea, with distal terrestrial exposures on the Chatham Islands. These super-eruptions involved ~2500 km^3 and ~1500 km3 of magma (dense-rock equivalent; DRE), respectively. Ultra-distal terrestrial exposures of YTT at two localities in India, Middle Son Valley, Madhya Pradesh, and Jurreru River Valley, Andhra Pradesh, at distances of >2000 km from the source caldera, show a basal ‘primary’ ashfall unit ~4 cm thick, although deposits containing reworked ash are up to ~3 m in total thickness. Exposures of Rangitawa Tephra on the Chatham Islands, >900 km from the source caldera, are ~15-30 cm thick. At more proximal localities (~200 km from source), Rangitawa Tephra is ~55-70 cm thick and characterized by a crystal-rich basal layer and normal grading. Both distal tephra deposits are characterized by very-fine ash (with high PM10 fractions) and are crystal-poor. Glass chemistry, stratigraphy and grain-size data for these distal tephra deposits are presented with comparisons of their correlation, dispersal and preservation. Using field observations, ash transport and deposition were modeled for both eruptions using a semi-analytical model (HAZMAP), with assumptions concerning average wind direction and strength during eruption, column shape and vent size. Model outputs provide new insights into eruption dynamics and better estimates of eruption volumes associ- ated with tephra fallout. Modeling based on observed YTT distal tephra thicknesses indicate a relatively low (<40 km high), very turbulent eruption column, consistent with deposition from a co-ignimbrite cloud extending over a broad region. Similarly, the Whakamaru eruption was modeled as producing a predominantly Plinian column (~45 km high), with dispersal to the southeast by strong prevailing winds. Significant ash fallout of the main dispersal direction, to the northwest of source, cannot be replicated in this modeling. The widespread dispersal of large volumes of fine ash from both eruptions may have had global environmental consequences, acutely affecting areas up to thousands of kilometers from vent.
Resumo:
One-second-resolution zenith radiance measure- ments from the Atmospheric Radiation Measurement pro- gram’s new shortwave spectrometer (SWS) provide a unique opportunity to analyze the transition zone between cloudy and cloud-free air, which has considerable bearing on the aerosol indirect effect. In the transition zone, we find a re- markable linear relationship between the sum and difference of radiances at 870 and 1640 nm wavelengths. The intercept of the relationship is determined primarily by aerosol prop- erties, and the slope by cloud properties. We then show that this linearity can be predicted from simple theoretical con- siderations and furthermore that it supports the hypothesis of inhomogeneous mixing, whereby optical depth increases as a cloud is approached but the effective drop size remains un- changed.
The impact of buffer zone size and management on illegal extraction, park protection and enforcement
Resumo:
Many protected areas or parks in developing countries have buffer zones at their boundaries to achieve the dual goals of protecting park resources and providing resource benefits to neighbouring people. Despite the prevalence of these zoning policies, few behavioural models of people’s buffer zone use inform the sizing and management of those zones. This paper uses a spatially explicit resource extraction model to examine the impact of buffer zone size and management on extraction by local people, both legal and illegal, and the impact of that extraction on forest quality in the park’s core and buffer zone. The results demonstrate trade-offs between the level of enforcement, the size of a buffer zone, and the amount of illegal extraction in the park; and describe implications for “enrichment” of buffer zones and evaluating patterns of forest degradation.
Resumo:
Natural ventilation relies on less controllable natural forces so that it needs more artificial control, and thus its prediction, design and analysis become more important. This paper presents both theoretical and numerical simulations for predicting the natural ventilation flow in a two-zone building with multiple openings which is subjected to the combined natural forces. To our knowledge, this is the first analytical solutions obtained so far for a building with more than one zones and in each zone with possibly more than 2 openings. The analytical solution offers a possibility for validating a multi-zone airflow program. A computer program MIX is employed to conduct the numerical simulation. Good agreement is achieved. Different airflow modes are identified and some design recommendations are also provided.