43 resultados para resting-state networks
Resumo:
Movement intention detection is important for development of intuitive movement based Brain Computer Interfaces (BCI). Various complex oscillatory processes are involved in producing voluntary movement intention. In this paper, temporal dynamics of electroencephalography (EEG) associated with movement intention and execution were studied using autocorrelation. It was observed that the trend of decay of autocorrelation of EEG changes before and during the voluntary movement. A novel feature for movement intention detection was developed based on relaxation time of autocorrelation obtained by fitting exponential decay curve to the autocorrelation. This new single trial feature was used to classify voluntary finger tapping trials from resting state trials with peak accuracy of 76.7%. The performance of autocorrelation analysis was compared with Motor-Related Cortical Potentials (MRCP).
Resumo:
The frontal pole corresponds to Brodmann area (BA) 10, the largest single architectonic area in the human frontal lobe. Generally, BA10 is thought to contain two or three subregions that subserve broad functions such as multitasking, social cognition, attention, and episodic memory. However, there is a substantial debate about the functional and structural heterogeneity of this large frontal region. Previous connectivity-based parcellation studies have identified two or three subregions in the human frontal pole. Here, we used diffusion tensor imaging to assess structural connectivity of BA10 in 35 healthy subjects and delineated subregions based on this connectivity. This allowed us to determine the correspondence of structurally based subregions with the scheme previously defined functionally. Three subregions could be defined in each subject. However, these three subregions were not spatially consistent between subjects. Therefore, we accepted a solution with two subregions that encompassed the lateral and medial frontal pole. We then examined resting-state functional connectivity of the two subregions and found significant differences between their connectivities. The medial cluster was connected to nodes of the default-mode network, which is implicated in internally focused, self-related thought, and social cognition. The lateral cluster was connected to nodes of the executive control network, associated with directed attention and working memory. These findings support the concept that there are two major anatomical subregions of the frontal pole related to differences in functional connectivity.
Resumo:
Thermal or chemical treatment of crystalline 4,4-bipyridinium salts of [MCl4]2- (M=Co, Zn, Fe, or Pt) leads to HCl loss and formation of coordination network solids [{MCl2(4,4-bipy)}n]. For M=Co, Zn, and Fe, these solids can also be prepared by mechanochemical means. Their exposure to HCl vapor or the mechanochemical reaction of metal dichlorides with [4,4-H2bipy]Cl2 gives [4,4-H2bipy]2+ salts of [CoCl4]2-, [ZnCl4]2-, and, for the first time, [FeCl4]2-.
Resumo:
Proteomics approaches have made important contributions to the characterisation of platelet regulatory mechanisms. A common problem encountered with this method, however, is the masking of low-abundance (e.g. signalling) proteins in complex mixtures by highly abundant proteins. In this study, subcellular fractionation of washed human platelets either inactivated or stimulated with the glycoprotein (GP) VI collagen receptor agonist, collagen-related peptide, reduced the complexity of the platelet proteome. The majority of proteins identified by tandem mass spectrometry are involved in signalling. The effect of GPVI stimulation on levels of specific proteins in subcellular compartments was compared and analysed using in silico quantification, and protein associations were predicted using STRING (the search tool for recurring instances of neighbouring genes/proteins). Interestingly, we observed that some proteins that were previously unidentified in platelets including teneurin-1 and Van Gogh-like protein 1, translocated to the membrane upon GPVI stimulation. Newly identified proteins may be involved in GPVI signalling nodes of importance for haemostasis and thrombosis.
Resumo:
This paper presents novel observer-based techniques for the estimation of flow demands in gas networks, from sparse pressure telemetry. A completely observable model is explored, constructed by incorporating difference equations that assume the flow demands are steady. Since the flow demands usually vary slowly with time, this is a reasonable approximation. Two techniques for constructing robust observers are employed: robust eigenstructure assignment and singular value assignment. These techniques help to reduce the effects of the system approximation. Modelling error may be further reduced by making use of known profiles for the flow demands. The theory is extended to deal successfully with the problem of measurement bias. The pressure measurements available are subject to constant biases which degrade the flow demand estimates, and such biases need to be estimated. This is achieved by constructing a further model variation that incorporates the biases into an augmented state vector, but now includes information about the flow demand profiles in a new form.
Resumo:
Body area networks (BANs) are emerging as enabling technology for many human-centered application domains such as health-care, sport, fitness, wellness, ergonomics, emergency, safety, security, and sociality. A BAN, which basically consists of wireless wearable sensor nodes usually coordinated by a static or mobile device, is mainly exploited to monitor single assisted livings. Data generated by a BAN can be processed in real-time by the BAN coordinator and/or transmitted to a server-side for online/offline processing and long-term storing. A network of BANs worn by a community of people produces large amount of contextual data that require a scalable and efficient approach for elaboration and storage. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of body sensor data streams. In this paper, we motivate the introduction of Cloud-assisted BANs along with the main challenges that need to be addressed for their development and management. The current state-of-the-art is overviewed and framed according to the main requirements for effective Cloud-assisted BAN architectures. Finally, relevant open research issues in terms of efficiency, scalability, security, interoperability, prototyping, dynamic deployment and management, are discussed.
Resumo:
The structures Of four alkali-metal copper (I) cyanides, KCu2(CN)(3)(H2O)-H-.-II (I), K2Cu3(CN)(5) (II), CsCu3(CN)(4) (III) and KCu3(CN)(4) (IV) are described. Three of these, ((II)-(IV)), with previously unknown ACN:CuCN ratios have new copper-cyanide frameworks, whilst (1) is a new polymorph of KCu2(CN)(3)(H2O)-H-.. These structures are discussed in terms of assembly from the simple building units Cu(CN)(2/2), Cu(CN)(3/2), Cu(CN)(2/2)(CN)(1/1) and Cu(CN)(4/2). Compounds (I), (II) and (III) are layered materials based on (6,3) nets containing (CuCN)(6) rings (I) and (CuCN)(8) rings (II) and (III). In compound (IV), (4,4) nets containing (CuCN)(12) rings link to generate a three-dimensional network. Both (III) and (IV) are examples of interpenetrating solids in which two and four identical networks interweave, respectively. These materials illustrate the structural versatility of copper (I) in cyanide frameworks. (c) 2006 Elsevier SAS. All rights reserved.
Resumo:
The aim of this paper is to study the impact of channel state information on the design of cooperative transmission protocols. This is motivated by the fact that the performance gain achieved by cooperative diversity comes at the price of the extra bandwidth resource consumption. Several opportunistic relaying strategies are developed to fully utilize the different types of a priori channel information. The analytical and numerical results demonstrate that the use of such a priori information increases the spectral efficiency of cooperative diversity, especially at low signal-to-noise ratio.
Resumo:
We discuss the feasibility of wireless terahertz communications links deployed in a metropolitan area and model the large-scale fading of such channels. The model takes into account reception through direct line of sight, ground and wall reflection, as well as diffraction around a corner. The movement of the receiver is modeled by an autonomous dynamic linear system in state space, whereas the geometric relations involved in the attenuation and multipath propagation of the electric field are described by a static nonlinear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a single-output Wiener model from time-domain measurements of the field intensity when the receiver motion is simulated using a constant angular speed and an exponentially decaying radius. The identification procedure is validated by using the model to perform q-step ahead predictions. The sensitivity of the algorithm to small-scale fading, detector noise, and atmospheric changes are discussed. The performance of the algorithm is tested in the diffraction zone assuming a range of emitter frequencies (2, 38, 60, 100, 140, and 400 GHz). Extensions of the simulation results to situations where a more complicated trajectory describes the motion of the receiver are also implemented, providing information on the performance of the algorithm under a worst case scenario. Finally, a sensitivity analysis to model parameters for the identified Wiener system is proposed.
Resumo:
Brand competition is modelled using an agent based approach in order to examine the long run dynamics of market structure and brand characteristics. A repeated game is designed where myopic firms choose strategies based on beliefs about their rivals and consumers. Consumers are heterogeneous and can observe neighbour behaviour through social networks. Although firms do not observe them, the social networks have a significant impact on the emerging market structure. Presence of networks tends to polarize market share and leads to higher volatility in brands. Yet convergence in brand characteristics usually happens whenever the market reaches a steady state. Scale-free networks accentuate the polarization and volatility more than small world or random networks. Unilateral innovations are less frequent under social networks.
Resumo:
Self-organizing neural networks have been implemented in a wide range of application areas such as speech processing, image processing, optimization and robotics. Recent variations to the basic model proposed by the authors enable it to order state space using a subset of the input vector and to apply a local adaptation procedure that does not rely on a predefined test duration limit. Both these variations have been incorporated into a new feature map architecture that forms an integral part of an Hybrid Learning System (HLS) based on a genetic-based classifier system. Problems are represented within HLS as objects characterized by environmental features. Objects controlled by the system have preset targets set against a subset of their features. The system's objective is to achieve these targets by evolving a behavioural repertoire that efficiently explores and exploits the problem environment. Feature maps encode two types of knowledge within HLS — long-term memory traces of useful regularities within the environment and the classifier performance data calibrated against an object's feature states and targets. Self-organization of these networks constitutes non-genetic-based (experience-driven) learning within HLS. This paper presents a description of the HLS architecture and an analysis of the modified feature map implementing associative memory. Initial results are presented that demonstrate the behaviour of the system on a simple control task.