59 resultados para response function
Resumo:
CSRP3 or muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein and a mechanosensor in cardiac myocytes. MLP regulation and function was studied in cultured neonatal rat myocytes treated with pharmacological or mechanical stimuli. Either verapamil or BDM decreased nuclear MLP while phenylephrine and cyclic strain increased it. These results suggest that myocyte contractility regulates MLP subcellular localization. When RNA polymerase II was inhibited with alpha-amanitin, nuclear MLP was reduced by 30%. However, when both RNA polymerase I and II were inhibited with actinomycin D, there was a 90% decrease in nuclear MLP suggesting that its nuclear translocation is regulated by both nuclear and nucleolar transcriptional activity. Using cell permeable synthetic peptides containing the putative nuclear localization signal (NLS) of MLP, nuclear import of the protein in cultured rat neonatal myocytes was inhibited. The NLS of MLP also localizes to the nucleolus. Inhibition of nuclear translocation prevented the increased protein accumulation in response to phenylephrine. Furthermore, cyclic strain of myocytes after prior NLS treatment to remove nuclear MLP resulted in disarrayed sarcomeres. Increased protein synthesis and brain natriuretic peptide expression were also prevented suggesting that MLP is required for remodeling of the myo filaments and gene expression. These findings suggest that nucleocytoplasmic shuttling MLP plays an important role in the regulation of the myocyte remodeling and hypertrophy and is required for adaptation to hypertrophic stimuli. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Disulfide bonding contributes to the function and antigenicity of many viral envelope glycoproteins. We assessed here its significance for the hepatitis C virus E2 envelope protein and a counterpart deleted for hypervariable region-1 (HVR1). All 18 cysteine residues of the antigens were involved in disulfides. Chemical reduction of up to half of these disulfides was compatible with anti-E2 monoclonal antibody reaction, CD81 receptor binding, and viral entry, whereas complete reduction abrogated these properties. The addition of 5,5'-dithiobis-2-nitrobenzoic acid had no effect on viral entry. Thus, E2 function is only weakly dependent on its redox status, and cell entry does not require redox catalysts, in contrast to a number of enveloped viruses. Because E2 is a major neutralizing antibody target, we examined the effect of disulfide bonding on E2 antigenicity. We show that reduction of three disulfides, as well as deletion of HVR1, improved antibody binding for half of the patient sera tested, whereas it had no effect on the remainder. Small scale immunization of mice with reduced E2 antigens greatly improved serum reactivity with reduced forms of E2 when compared with immunization using native E2, whereas deletion of HVR1 only marginally affected the ability of the serum to bind the redox intermediates. Immunization with reduced E2 also showed an improved neutralizing antibody response, suggesting that potential epitopes are masked on the disulfide-bonded antigen and that mild reduction may increase the breadth of the antibody response. Although E2 function is surprisingly independent of its redox status, its disulfide bonds mask antigenic domains. E2 redox manipulation may contribute to improved vaccine design.
Resumo:
Lys-gamma 3-MSH is a melanocortin peptide derived from the C-terminal of the 16 kDa fragment of POMC. The physiological role of Lys-gamma 3-MSH is unclear, although it has previously been shown that, although not directly steroidogenic, it can act to potentiate the steroidogenic response of adrenal cortical cells to ACTH. This synergistic effect appears to be correlated with an ability to increase the activity of hormone sensitive lipase (HSL) and therefore the rate of cholesterol ester hydrolysis. Ligand binding studies have suggested that high-affinity binding sites for Lys-gamma 3-MSH exist in the adrenal gland and a number of other rat tissues that express HSL, including adipose, skeletal muscle and testes. To investigate the hypothesis that Lys-gamma 3-MSH may play a wider role in cholesterol and lipid metabolism, we tested the effect of Lys-gamma 3-MSH on lipolysis, an HSL-mediated process, in 3T3-L1 adipocytes. In comparison with other melanocortin peptides, Lys-gamma 3-MSH was found to be a potent stimulator of lipolysis. It was also able to phosphorylate HSL at key serine residues and stimulate the hyper-phosphorylation of perilipin A. The receptor through which the lipolytic actions of Lys-gamma 3-MSH are being mediated is not clear. Attempts to characterise this receptor suggest that either the pharmacology of the melanocortin receptor 5 in 3T3-L1 adipocytes is different from that described when expressed in heterologous systems or the possibility that a further, as yet uncharacterised, receptor exists.
Resumo:
BACKGROUND: The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei. RESULTS: Using bacteriophage-mediated immunoscreening we identified genes expressed in vivo during experimental equine glanders infection. A family of immunodominant antigens were identified that share protein domain architectures with hemagglutinins and invasins. These have been designated Burkholderia Hep_Hag autotransporter (BuHA) proteins. A total of 110/207 positive clones (53%) of a B. mallei expression library screened with sera from two infected horses belonged to this family. This contrasted with 6/189 positive clones (3%) of a B. pseudomallei expression library screened with serum from 21 patients with culture-proven melioidosis. CONCLUSION: Members of the BuHA proteins are found in other Gram-negative bacteria and have been shown to have important roles related to virulence. Compared with other bacterial species, the genomes of both B. mallei and B. pseudomallei contain a relative abundance of this family of proteins. The domain structures of these proteins suggest that they function as multimeric surface proteins that modulate interactions of the cell with the host and environment. Their effect on the cellular immune response to B. mallei and their potential as diagnostics for glanders requires further study.
Resumo:
Formation and rearrangement of disulfide bonds during the correct folding of nascent proteins is modulated by a family of enzymes known as thiol isomerases, which include protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERP5), and ERP57. Recent evidence supports an alternative role for this family of proteins on the surface of cells, where they are involved in receptor 'remodeling and recognition. In platelets, blocking PDI with inhibitory antibodies inhibits a number of platelet activation pathways, including aggregation, secretion, and fibrinogen binding. Analysis of human platelet membrane fractions identified the presence of the thiol isomerase protein ERP5. Further study showed that ERP5 is resident mainly on platelet intracellular membranes, although it is rapidly recruited to the cell, surface in response to a range of platelet agonists. Blocking cell-surface ERP5 using inhibitory antibodies leads to a decrease in platelet aggregation in response to agonists, and a decrease in fibrinogen binding and P-selectin exposure. It is Possible that this is based on the disruption of integrin function, as we observed that ERP5 becomes physically associated with the integrin beta(3) subunit during platelet stimulation. These results provide new insights into the involvement of thiol isomerases and regulation of platelet activation. (C) 2005 by The American Society of Hematology.
Resumo:
Flower and inflorescence reversion involve a switch from floral development back to vegetative development, thus rendering flowering a phase in an ongoing growth pattern rather than a terminal act of the meristem. Although it can be considered an unusual event, reversion raises questions about the nature and function of flowering. It is linked to environmental conditions and is most often a response to conditions opposite to those that induce flowering. Research on molecular genetic mechanisms underlying plant development over the last 15 years has pinpointed some of the key genes involved in the transition to flowering and flower development. Such investigations have also uncovered mutations which reduce floral maintenance or alter the balance between vegetative and floral features of the plant. How this information contributes to an understanding of floral reversion is assessed here. One issue that arises is whether floral commitment (defined as the ability to continue flowering when inductive conditions no longer exist) is a developmental switch affecting the whole plant or is a mechanism which assigns autonomy to individual meristems. A related question is whether floral or vegetative development is the underlying default pathway of the plant. This review begins by considering how studies of flowering in Arabidopsis thaliana have aided understanding of mechanisms of floral maintenance. Arabidopsis has not been found to revert to leaf production in any of the conditions or genetic backgrounds analysed to date. A clear-cut reversion to leaf production has, however, been described in Impatiens balsamina. It is proposed that a single gene controls whether Impatiens reverts or can maintain flowering when inductive conditions are removed, and it is inferred that this gene functions to control the synthesis or transport of a leaf-generated signal. But it is also argued that the susceptibility of Impatiens to reversion is a consequence of the meristem-based mechanisms controlling development of the flower in this species. Thus, in Impatiens, a leaf-derived signal is critical for completion of flowering and can be considered to be the basis of a plant-wide floral commitment that is achieved without accompanying meristem autonomy. The evidence, derived from in vitro and other studies, that similar mechanisms operate in other species is assessed. It is concluded that most species (including Arabidopsis) are less prone to reversion because signals from the leaf are less ephemeral, and the pathways driving flower development have a high level of redundancy that generates meristem autonomy even when leaf-derived signals are weak. This gives stability to the flowering process, even where its initiation is dependent on environmental cues. On this interpretation, Impatiens reversion appears as an anomaly resulting from an unusual combination of leaf signalling and meristem regulation. Nevertheless, it is shown that the ability to revert can serve a function in the life history strategy (perenniality) or reproductive habit (pseudovivipary) of many plants. In these instances reversion has been assimilated into regular plant development and plays a crucial role there.
Resumo:
Evidence has been mounting for peripheral functions for tachykinins, a family of neuropeptides including substance P (SP), neurokinin A, and neurokinin B, which are recognized for their roles in the central and peripheral nervous system. The recent discovery of 4 new members of this family, the endokinins (EKA, B, C, and 13), which are distributed peripherally, adds support to the notion that tachykinins have physiologic/endocrine roles in the periphery. In the present study we report a fundamental new function for tachykinins in the regulation of platelet function. We show that SP stimulates platelet aggregation, and underlying this is the intracellular mobilization of calcium and degranulation. We demonstrate the presence of the tachykinin receptors NK1 and NK3 in platelets and present evidence for the involvement of NK1 in SP-mediated platelet aggregation. Platelets were found to contain SP-like immunoreactivity that is secreted upon activation implicating SP-like substances in the autocrine/paracrine regulation of these cells. Indeed, NK1-blocking antibodies inhibited aggregation in response to other agonists. Of particular note is the observation that EKA/B cross-react in the SP immunoassay and are also able to stimulate platelet activation. Together our data implicate tachykinins, specifically SP and EKA/B, in the regulation of platelet function. (C) 2004 by The American Society of Hematology.
Resumo:
Hypothesis: The aim of this study was to measure the mass loading effect of an active middle-ear implant (the Vibrant Soundbridge) in cadaver temporal bones. Background: Implantable middle ear hearing devices such as Vibrant Soundbridge have been used as an alternative to conventional hearing aids for the rehabilitation of sensorineural hearing loss. Other than the obvious disadvantage of requiring implantation middle ear surgery, it also applies a direct weight on the ossicular chain which, in turn, may have an impact on residual hearing. Previous studies have shown that applying a mass directly on the ossicular chain has a damping effect on its response to sound. However, little has been done to investigate the magnitude and the frequency characteristics of the mass loading effect in devices such as the Vibrant Soundbridge. Methods: Five fresh cadaver temporal bones were used. The stapes displacement was measured using laser Doppler vibrometry before and after the placement of a Vibrant Sound-bridge floating mass transducer. The effects of mass and attachment site were compared with the unloaded response. Measurements were obtained at frequencies between 0.1 and 10 kHz and at acoustic input levels of 100 dB sound pressure level. Each temporal bone acted as its own control. Results: Placement of the floating mass transducer caused a reduction of the stapes displacement. There were variations between the bones. The change of the stapes displacement varied from 0 dB to 28 dB. The effect was more prominent at frequencies above 1,000 Hz. Placing the floating mass transducer close to the incudostapedial joint reduced the mass loading effect. Conclusion: The floating mass transducer produces a measurable reduction of the stapes displacement in the temporal bone model. The effect is more prominent at high frequencies.
Resumo:
Purpose of review This review critically evaluates recent studies investigating the effects of fatty acids on immune and inflammatory responses in both healthy individuals and in patients with inflammatory diseases, with some reference to animal studies where relevant. It examines recent findings describing the cellular and molecular basis for the modulation of immune function by fatty acids. The newly emerging area of diet-genotype interactions will also be discussed, with specific reference to the anti-inflammatory effects of fish oil. Recent findings Fatty acids are participants in many intracellular signalling pathways. They act as ligands for nuclear receptors regulating a host of cell responses, they influence the stability of lipid rafts, and modulate eicosanoid metabolism in cells of the immune system. Recent findings suggest that some or all of these mechanisms may be involved in the modulation of immune function by fatty acids. Summary Human studies investigating the relationship between dietary fatty acids and some aspects of the immune response have been disappointingly inconsistent. This review presents the argument that most studies have not been adequately powered to take into account the influence of variation (genotypic or otherwise) on parameters of immune function. There is well-documented evidence that fatty acids modulate T lymphocyte activation, and recent findings describe a range of potential cellular and molecular mechanisms. However, there are still many questions remaining, particularly with respect to the roles of nuclear receptors, for which fatty acids act as ligands, and the modulation of eicosanoid synthesis, for which fatty acids act as precursors.
Resumo:
Background: Aging is associated with reduced numbers of beneficial colonic bifidobacteria and impaired immunity. Galactooligosaccharides (GOSs) stimulate the growth of bifidobacteria in younger adults, but little is known about their effects in the elderly and their immunomodulatory capacity. Objective: We assessed the effect of a prebiotic GOS mixture (B-GOS) on immune function and fecal microflora composition in healthy elderly subjects. Design: In a double-blind, placebo-controlled, crossover study, 44 elderly subjects were randomly assigned to receive either a placebo or the B-GOS treatment (5.5 g/d). Subjects consumed the treatments for 10 wk, and then went through a 4-wk washout period, before switching to the other treatment for the final 10 wk. Blood and fecal samples were collected at the beginning, middle (5 wk), and end of the test period. Predominant bacterial groups were quantified, and phagocytosis, natural killer (NK) cell activity, cytokine production, plasma cholesterol, and HDL cholesterol were measured. Results: B-GOS significantly increased the numbers of beneficial bacteria, especially bifidobacteria, at the expense of less beneficial groups compared with the baseline and placebo. Significant increases in phagocytosis, NK cell activity, and the production of antiinflammatory cytokine interleukin-10 (IL-10) and significant reduction in the production of proinflammatory cytokines (IL-6, IL-1 beta , and tumor necrosis factor-alpha) were also observed. B-GOS exerted no effects on total cholesterol or HDL-cholesterol production, however. Conclusions: B-GOS administration to healthy elderly persons resulted in positive effects on both the microflora composition and the immune response. Therefore, B-GOS may be a useful dietary candidate for the enhancement of gastrointestinal health and immune function in elderly persons. Am J Clin Nutr 2008; 88: 1438-46.
Resumo:
Background: There is little information about the relation between the fatty acid composition of human immune cells and the function of those cells over the habitual range of fatty acid intakes. Objective: The objective of the study was to determine the relation between the fatty acid composition of human peripheral blood mononuclear cell (PBMC) phospholipids and the functions of human immune cells. Design: One hundred fifty healthy adult subjects provided a fasting blood sample. The phagocytic and oxidative burst activities of monocytes and neutrophils were measured in whole blood. PBMCs were isolated and used to measure lymphocyte proliferation in response to the T cell mitogen concanavalin A and the production of cytokines in response to concanavalin A or bacterial lipopolysaccharide. The fatty acid composition of plasma and PBMC phospholipids was determined. Results: Wide variations in fatty acid composition of PBMC phospholipids and immune cell functions were identified among the subjects. The proportions of total Polyunsaturated fatty acids (PUFAs), of total n-6 and n-3 PUFAs, and of several individual PUFAs in PBMC phospholipids were positively correlated with phagocytosis by neutrophils and monocytes, neutrophil oxidative burst, lymphocyte proliferation, and interferon gamma production. The ratios of saturated fatty acids to PUFAs and of n-6 to n-3 PUFAs were negatively correlated with these same immune functions. The relation of PBMC fatty acid composition to monocyte oxidative burst was the reverse of its relation to monocyte phagocytosis and neutrophil oxidative burst. Conclusion: Variations in the fatty acid composition of PBMC phospholipids account for some of the variability in immune cell functions among healthy adults.
Resumo:
Background: Greatly increasing dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA)] or fish oil [rich in the long-chain n-3 PUFAs eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] can reduce markers of immune cell function. The effects of more modest doses are unclear, and it is not known whether ALA has the same effects as its long-chain derivatives. Objective: The objective was to determine the effects of enriching the diet with ALA or EPA+DHA on immune outcomes representing key functions of human neutrophils, monocytes, and lymphocytes. Design: In a placebo-controlled, double-blind, parallel study, 150 healthy men and women aged 25-72 y were randomly assigned to I of 5 interventions: placebo (no additional n-3 PUFAs), 4.5 or 9.5 g ALA/d, and 0.77 or 1.7 g EPA+DHA/d for 6 mo. The n-3 PUFAs were provided in 25 g fat spread plus 3 oil capsules. Blood samples were taken at 0, 3, and 6 mo. Results: The fatty acid composition of peripheral blood mononuclear cell phospholipids was significantly different in the groups with higher intakes of ALA or EPA+DHA. The interventions did not alter the percentages of neutrophils or monocytes engaged in phagocytosis of Escherichia coli or in phagocytic activity, the percentages of neutrophils or monocytes undergoing oxidative burst in response to E. coli or phorbol ester, the proliferation of lymphocytes in response to a T cell mitogen, the production of numerous cytokines by monocytes and lymphocytes, or the in vivo delayed-type hypersensitivity response. Conclusion: An intake of f less than or equal to9.5 g ALA/d or less than or equal to1.7 g EPA+DHA/d does not alter the functional activity of neutrophils, monocytes, or lymphocytes, but it changes the fatty acid composition of mononuclear cells.
Resumo:
Objective: To evaluate the effect of robot-mediated therapy on arm dysfunction post stroke. Design: A series of single-case studies using a randomized multiple baseline design with ABC or ACB order. Subjects (n = 20) had a baseline length of 8, 9 or 10 data points. They continued measurement during the B - robot-mediated therapy and C - sling suspension phases. Setting: Physiotherapy department, teaching hospital. Subjects: Twenty subjects with varying degrees of motor and sensory deficit completed the study. Subjects attended three times a week, with each phase lasting three weeks. Interventions: In the robot-mediated therapy phase they practised three functional exercises with haptic and visual feedback from the system. In the sling suspension phase they practised three single-plane exercises. Each treatment phase was three weeks long. Main measures: The range of active shoulder flexion, the Fugl-Meyer motor assessment and the Motor Assessment Scale were measured at each visit. Results: Each subject had a varied response to the measurement and intervention phases. The rate of recovery was greater during the robot-mediated therapy phase than in the baseline phase for the majority of subjects. The rate of recovery during the robot-mediated therapy phase was also greater than that during the sling suspension phase for most subjects. Conclusion: The positive treatment effect for both groups suggests that robot-mediated therapy can have a treatment effect greater than the same duration of non-functional exercises. Further studies investigating the optimal duration of treatment in the form of a randomized controlled trial are warranted.
Resumo:
A quasi-optical deembedding technique for characterizing waveguides is demonstrated using wide-band time-resolved terahertz spectroscopy. A transfer function representation is adopted for the description of the signal in the input and output port of the waveguides. The time-domain responses were discretized and the waveguide transfer function was obtained through a parametric approach in the z-domain after describing the system with an AutoRegressive with eXogenous input (ARX), as well as with a state-space model. Prior to the identification procedure, filtering was performed in the wavelet domain to minimize both signal distortion, as well as the noise propagating in the ARX and subspace models. The optimal filtering procedure used in the wavelet domain for the recorded time-domain signatures is described in detail. The effect of filtering prior to the identification procedures is elucidated with the aid of pole-zero diagrams. Models derived from measurements of terahertz transients in a precision WR-8 waveguide adjustable short are presented.
Resumo:
The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify the theoretical predictions from the outputs of the simulations up to a high degree of precision. The theory is used to explain differences in the response of local and global observables, to define the intensive properties of the system, which do not depend on the spatial resolution of the Lorenz 96 model, and to generalize the concept of climate sensitivity to all time scales. We also show how to reconstruct the linear Green function, which maps perturbations of general time patterns into changes in the expectation value of the considered observable for finite as well as infinite time. Finally, we propose a simple yet general methodology to study general Climate Change problems on virtually any time scale by resorting to only well selected simulations, and by taking full advantage of ensemble methods. The specific case of globally averaged surface temperature response to a general pattern of change of the CO2 concentration is discussed. We believe that the proposed approach may constitute a mathematically rigorous and practically very effective way to approach the problem of climate sensitivity, climate prediction, and climate change from a radically new perspective.