30 resultados para renewable energy production


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays the electricity consumption in the residential sector attracts policy and research efforts, in order to propose saving strategies and to attain a better balance between production and consumption, by integrating renewable energy production and proposing suitable demand side management methods. To achieve these objectives it is essential to have real information about household electricity demand profiles in dwellings, highly correlated, among other aspects, with the active occupancy of the homes and to the personal activities carried out in homes by their occupants. Due to the limited information related to these aspects, in this paper, behavioral factors of the Spanish household residents, related to the electricity consumption, have been determined and analyzed, based on data from the Spanish Time Use Surveys, differentiating among the Autonomous Communities and the size of municipalities, or the type of days, weekdays or weekends. Activities involving a larger number of houses are those related to Personal Care, Food Preparation and Washing Dishes. The activity of greater realization at homes is Watching TV, which together with Using PC, results in a high energy demand in an aggregate level. Results obtained enable identify prospective targets for load control and for efficiency energy reduction recommendations to residential consumers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Almost all the electricity currently produced in the UK is generated as part of a centralised power system designed around large fossil fuel or nuclear power stations. This power system is robust and reliable but the efficiency of power generation is low, resulting in large quantities of waste heat. The principal aim of this paper is to investigate an alternative concept: the energy production by small scale generators in close proximity to the energy users, integrated into microgrids. Microgrids—de-centralised electricity generation combined with on-site production of heat—bear the promise of substantial environmental benefits, brought about by a higher energy efficiency and by facilitating the integration of renewable sources such as photovoltaic arrays or wind turbines. By virtue of good match between generation and load, microgrids have a low impact on the electricity network, despite a potentially significant level of generation by intermittent energy sources. The paper discusses the technical and economic issues associated with this novel concept, giving an overview of the generator technologies, the current regulatory framework in the UK, and the barriers that have to be overcome if microgrids are to make a major contribution to the UK energy supply. The focus of this study is a microgrid of domestic users powered by small Combined Heat and Power generators and photovoltaics. Focusing on the energy balance between the generation and load, it is found that the optimum combination of the generators in the microgrid- consisting of around 1.4 kWp PV array per household and 45% household ownership of micro-CHP generators- will maintain energy balance on a yearly basis if supplemented by energy storage of 2.7 kWh per household. We find that there is no fundamental technological reason why microgrids cannot contribute an appreciable part of the UK energy demand. Indeed, an estimate of cost indicates that the microgrids considered in this study would supply electricity at a cost comparable with the present electricity supply if the current support mechanisms for photovoltaics were maintained. Combining photovoltaics and micro-CHP and a small battery requirement gives a microgrid that is independent of the national electricity network. In the short term, this has particular benefits for remote communities but more wide-ranging possibilities open up in the medium to long term. Microgrids could meet the need to replace current generation nuclear and coal fired power stations, greatly reducing the demand on the transmission and distribution network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Bahrain International Circuit (BIC) and complex, at latitude 26.00N and longitude 51.54E, was built in 483 days and cost 150 million US$. The circuit consists of six different individual tracks with a 3.66 km outer track (involving 10 turns) and a 2.55 km inner track (having six turns). The complex has been designed to host a variety of other sporting activities. Fifty thousand spectators, including 10,500 in the main grandstand, can be accommodated simultaneously. State-of-the art on-site media and broadcast facilities are available. The noise level emitted from vehicles on the circuit during the Formula-1 event, on April 4th 2004, was acceptable and caused no physical disturbance to the fans in the VIP lounges or to scholars studying at the University of Bahrain's Shakeir Campus, which is only 1.5 km away from the circuit. The sound-intensity level (SIL) recorded on the balcony of the VIP lounge was 128 dB(A) and was 80 dB(A) inside the lounge. The calculated SIL immediately outside the lecture halls of the University of Bahrain was 70 dB(A) and 65 dB(A) within them. Thus racing at BIC can proceed without significantly disturbing the academic-learning process. The purchased electricity demand by the BIC complex peaked (at 4.5 MW) during the first Formula-1 event on April 4th 2004. The reverse-osmosis (RO) plant at the BIC provides 1000 m(3) of desalinated water per day for landscape irrigation. Renewable-energy inputs, (i.e., via solar and wind power), at the BIC could be harnessed to generate electricity for water desalination, air conditioning, lighting as well as for irrigation. If the covering of the BIC complex was covered by adhesively fixed modern photovoltaic cells, then similar to 1.2 MW of solar electricity could be generated. If two horizontal-axis, at 150 m height above the ground, three 75m bladed, wind turbines were to be installed at the BIC, then the output could reach 4 MW. Furthermore, if 10,000 Jojoba trees (a species renowned for having a low demand for water, needing only five irrigations per year in Bahrain and which remain green throughout the year) are planted near the circuit, then the local micro-climate would be improved with respect to human comfort as well as the local environment becoming cleaner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Climate change is one of the major challenges facing economic systems at the start of the 21st century. Reducing greenhouse gas emissions will require both restructuring the energy supply system (production) and addressing the efficiency and sufficiency of the social uses of energy (consumption). The energy production system is a complicated supply network of interlinked sectors with 'knock-on' effects throughout the economy. End use energy consumption is governed by complex sets of interdependent cultural, social, psychological and economic variables driven by shifts in consumer preference and technological development trajectories. To date, few models have been developed for exploring alternative joint energy production-consumption systems. The aim of this work is to propose one such model. This is achieved in a methodologically coherent manner through integration of qualitative input-output models of production, with Bayesian belief network models of consumption, at point of final demand. The resulting integrated framework can be applied either (relatively) quickly and qualitatively to explore alternative energy scenarios, or as a fully developed quantitative model to derive or assess specific energy policy options. The qualitative applications are explored here.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The People's Republic of China and its 1.3 billion people have experienced a rapid economic growth in the past two decades. China's urbanisation ratio rose from around 20% in the early 1980s to 45% in 2007 [China Urban Research Committee. Green building. Beijing: Chinese Construction Industrial Publish House; 2008. ISBN 978-7-112-09925-2.]. The large volume and rapid speed of building construction rarely have been seen in global development and cause substantial pressure on resources and the environment. Government policy makers and building professionals, including architects, building engineers, project managers and property developers, should play an important role in enhancing the planning, design, construction, operation and maintenance of the building energy efficiency process in forming the sustainable urban development. This paper addresses the emerging issues relating to building energy consumption and building energy efficiency due to the fast urbanisation development in China.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are varieties of physical and behavioral factors to determine energy demand load profile. The attainment of the optimum mix of measures and renewable energy system deployment requires a simple method suitable for using at the early design stage. A simple method of formulating load profile (SMLP) for UK domestic buildings has been presented in this paper. Domestic space heating load profile for different types of houses have been produced using thermal dynamic model which has been developed using thermal resistant network method. The daily breakdown energy demand load profile of appliance, domestic hot water and space heating can be predicted using this method. The method can produce daily load profile from individual house to urban community. It is suitable to be used at Renewable energy system strategic design stage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trends in China's energy future will have considerable consequences for both China and the global environment. Though China's carbon emissions are low on a per capita basis, China is already ranked the world's second largest producer of carbon, behind only America. China's buildings sector currently accounts for 23% of China's total energy use and is projected to increase to one-third by 2010. Energy policy plays an important role in China's sustainable development. The purpose of this study is to provide a broad overview of energy efficiency issues in the built environment in China. This paper, firstly briefly, reviews the key national policies related to the built environment and demonstrates the government's environmental concern. Secondly, the authors introduce recent energy policies in the built environment. Energy efficiency and renewable energy in the built environment, which are the key issues of the national energy policy, have been reviewed. Discussion of the implementation of energy policy has been carried out.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines some of the normative aspects of community energy programmes — defined here as decentralized forms of energy production and distributed energy technologies where production decisions are made as close as possible to sources of consumption. Such projects might also display a degree of separation from the formal political process. The development of a community energy system often generates a great deal of debate about both the degree of public support for such programmes and the values around which programmes ought to be organized. Community energy programmes also raise important issues regarding the energy choice problem, including questions of process, that is, by whom a project is developed and the influence of both community and exogenous actors, as well as certain outcome issues regarding the spatial and social distribution of energy. The case studies, drawn from community energy programmes in both the United States and the United Kingdom, allow for a careful examination of all of these factors, considering in particular the complex interplay and juxtaposition between the ideas of 'public value' and 'public values'.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biomass is an important source of energy in Thailand and is currently the main renewable energy source, accounting for 40% of the renewable energy used. The Department of Alternative Energy and E�ciency (DEDE), Ministry of Thailand, has been promoting the use of renewable energy in Thailand for the past decade. The new target for renewable energy usage in the country is set at 25% of the �nal energy demand in 2021. Thailand is the world’s fourth largest producer of cassava and this results in the production of signi�cant amounts of cassava rhizome which is a waste product. Cassava rhizome has the potential to be co-�red with coal for the production of heat and power. With suitable co-�ring ratios, little modi�cation will be required in the co-�ring technology. This review article is concerned with an investigation of the feasibility of co-�ring cassava rhizome in a combined heat and power system for a cassava based bio-ethanol plant in Thailand. Enhanced use of cassava rhizome for heat and power production could potentially contribute to a reduction of greenhouse gas emissions and costs, and would help the country to meet the 2021 renewable energy target.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, the performance, yield and characteristics of a 16 year old photovoltaic (PV) system installation have been investigated. The technology, BP Saturn modules which were steel-blue polycrystalline silicon cells are no longer in production. A bespoke monitoring system has been designed to monitor the characteristics of 6 refurbished strings, of 18 modules connected in series. The total output of the system is configured to 6.5 kWp (series to parallel configuration). In addition to experimental results, the performance ratio (PR) of known values was simulated using PVSyst, a simulation software package. From calculations using experimental values, the PV system showed approximately 10% inferior power outputs to what would have been expected as standard test conditions. However, efficiency values in comparison to standard test conditions and the performance ratio (w75% from PVSyst simulations) over the past decade have remained practically the same. This output though very relevant to the possible performance and stability of aging cells, requires additional parametric studies to develop a more robust argument. The result presented in this paper is part of an on-going investigation into PV system aging effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wind energy potential in Iberia is assessed for recent–past (1961–2000) and future (2041–2070) climates. For recent–past, a COSMO-CLM simulation driven by ERA-40 is used. COSMO-CLM simulations driven by ECHAM5 following the A1B scenario are used for future projections. A 2 MW rated power wind turbine is selected. Mean potentials, inter-annual variability and irregularity are discussed on annual/seasonal scales and on a grid resolution of 20 km. For detailed regional assessments eight target sites are considered. For recent–past conditions, the highest daily mean potentials are found in winter over northern and eastern Iberia, particularly on high-elevation or coastal regions. In northwestern Iberia, daily potentials frequently reach maximum wind energy output (50 MWh day−1), particularly in winter. Southern Andalucía reveals high potentials throughout the year, whereas the Ebro valley and central-western coast show high potentials in summer. The irregularity in annual potentials is moderate (<15% of mean output), but exacerbated in winter (40%). Climate change projections show significant decreases over most of Iberia (<2 MWh day−1). The strong enhancement of autumn potentials in Southern Andalucía is noteworthy (>2 MWh day−1). The northward displacement of North Atlantic westerly winds (autumn–spring) and the strengthening of easterly flows (summer) are key drivers of future projections.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulphur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially for electricity-powered systems, is the most important factor to determine their overall environmental performance. The direct-fired lithium-bromide absorption type consumes more non-renewable energy, and contributes more to the urban heat island effect compared with other options having the same electricity supply. Using Emergy Analysis, designers and clients can make better-informed, environmentally-conscious selections of heating, ventilating and air-conditioning systems.