189 resultados para reanalysis
Resumo:
Large-scale ocean transports of heat and freshwater have not been well monitored, and yet the regional budgets of these quantities are important to understanding the role of the oceans in climate and climate change. In contrast, atmospheric heat and freshwater transports are commonly assessed from atmospheric reanalysis products, despite the presence of non-conserving data assimilation based on the wealth of distributed atmospheric observations as constraints. The ability to carry out ocean reanalyses globally at eddy-permitting resolutions of 1/4 ° or better, along with new global ocean observation programs, now makes a similar approach viable for the ocean. In this paper we examine the budgets and transports within a global high resolution ocean model constrained by ocean data assimilation, and compare them with independent oceanic and atmospheric estimates.
Resumo:
This study evaluates the use of European Centre for Medium-Range Weather Forecasts (ECMWF) products in monitoring and forecasting drought conditions during the recent 2010–2011 drought in the Horn of Africa (HoA). The region was affected by a precipitation deficit in both the October–December 2010 and March–May 2011 rainy seasons. These anomalies were captured by the ERA-Interim reanalysis (ERAI), despite its limitations in representing the March–May interannual variability. Soil moisture anomalies of ERAI also identified the onset of the drought condition early in October 2010 with a persistent drought still present in September 2011. This signal was also evident in normalized difference vegetation index (NDVI) remote sensing data. The precipitation deficit in October–December 2010 was associated with a strong La Niña event. The ECMWF seasonal forecasts for the October–December 2010 season predicted the La Niña event from June 2010 onwards. The forecasts also predicted a below-average October–December rainfall, from July 2010 onwards. The subsequent March–May rainfall anomaly was only captured by the new ECWMF seasonal forecast system in the forecasts starting in March 2011. Our analysis shows that a recent (since 1999) drying in the region during the March–May season is captured by the new ECMWF seasonal forecast system and is consistent with recently published results. The HoA region and its population are highly vulnerable to future droughts, thus global monitoring and forecasting of drought, such as that presented here, will become increasingly important in the future. Copyright © 2012 Royal Meteorological Society
Resumo:
As wind generation increases, system impact studies rely on predictions of future generation and effective representation of wind variability. A well-established approach to investigate the impact of wind variability is to simulate generation using observations from 10 m meteorological mast-data. However, there are problems with relying purely on historical wind-speed records or generation histories: mast-data is often incomplete, not sited at a relevant wind generation sites, and recorded at the wrong altitude above ground (usually 10 m), each of which may distort the generation profile. A possible complimentary approach is to use reanalysis data, where data assimilation techniques are combined with state-of-the-art weather forecast models to produce complete gridded wind time-series over an area. Previous investigations of reanalysis datasets have placed an emphasis on comparing reanalysis to meteorological site records whereas this paper compares wind generation simulated using reanalysis data directly against historic wind generation records. Importantly, this comparison is conducted using raw reanalysis data (typical resolution ∼50 km), without relying on a computationally expensive “dynamical downscaling” for a particular target region. Although the raw reanalysis data cannot, by nature of its construction, represent the site-specific effects of sub-gridscale topography, it is nevertheless shown to be comparable to or better than the mast-based simulation in the region considered and it is therefore argued that raw reanalysis data may offer a number of significant advantages as a data source.
Resumo:
The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. This study examines QBO–vortex coupling in an AGCM in which a QBO is spontaneously induced by resolved and parameterized waves. The QBO–vortex coupling in the AGCM compares favorably to that seen in reanalysis data [from the 40-yr ECMWF Re-Analysis (ERA-40)], provided that careful attention is given to the definition of QBO phase. A phase angle representation of the QBO is employed that is based on the two leading empirical orthogonal functions of equatorial zonal wind vertical profiles. This yields a QBO phase that serves as a proxy for the vertical structure of equatorial winds over the whole depth of the stratosphere and thus provides a means of subsampling the data to select QBO phases with similar vertical profiles of equatorial zonal wind. Using this subsampling, it is found that the QBO phase that induces the strongest polar vortex response in early winter differs from that which induces the strongest late-winter vortex response. This is true in both hemispheres and for both the AGCM and ERA-40. It follows that the strength and timing of QBO influence on the vortex may be affected by the partial seasonal synchronization of QBO phase transitions that occurs both in observations and in the model. This provides a mechanism by which changes in the strength of QBO–vortex correlations may exhibit variability on decadal time scales. In the model, such behavior occurs in the absence of external forcings or interannual variations in sea surface temperatures.
Resumo:
Sub-seasonal variability including equatorial waves significantly influence the dehydration and transport processes in the tropical tropopause layer (TTL). This study investigates the wave activity in the TTL in 7 reanalysis data sets (RAs; NCEP1, NCEP2, ERA40, ERA-Interim, JRA25, MERRA, and CFSR) and 4 chemistry climate models (CCMs; CCSRNIES, CMAM, MRI, and WACCM) using the zonal wave number-frequency spectral analysis method with equatorially symmetric-antisymmetric decomposition. Analyses are made for temperature and horizontal winds at 100 hPa in the RAs and CCMs and for outgoing longwave radiation (OLR), which is a proxy for convective activity that generates tropopause-level disturbances, in satellite data and the CCMs. Particular focus is placed on equatorial Kelvin waves, mixed Rossby-gravity (MRG) waves, and the Madden-Julian Oscillation (MJO). The wave activity is defined as the variance, i.e., the power spectral density integrated in a particular zonal wave number-frequency region. It is found that the TTL wave activities show significant difference among the RAs, ranging from ∼0.7 (for NCEP1 and NCEP2) to ∼1.4 (for ERA-Interim, MERRA, and CFSR) with respect to the averages from the RAs. The TTL activities in the CCMs lie generally within the range of those in the RAs, with a few exceptions. However, the spectral features in OLR for all the CCMs are very different from those in the observations, and the OLR wave activities are too low for CCSRNIES, CMAM, and MRI. It is concluded that the broad range of wave activity found in the different RAs decreases our confidence in their validity and in particular their value for validation of CCM performance in the TTL, thereby limiting our quantitative understanding of the dehydration and transport processes in the TTL.
Resumo:
The long observational record is critical to our understanding of the Earth’s climate, but most observing systems were not developed with a climate objective in mind. As a result, tremendous efforts have gone into assessing and reprocessing the data records to improve their usefulness in climate studies. The purpose of this paper is to both review recent progress in reprocessing and reanalyzing observations, and summarize the challenges that must be overcome in order to improve our understanding of climate and variability. Reprocessing improves data quality through more scrutiny and improved retrieval techniques for individual observing systems, while reanalysis merges many disparate observations with models through data assimilation, yet both aim to provide a climatology of Earth processes. Many challenges remain, such as tracking the improvement of processing algorithms and limited spatial coverage. Reanalyses have fostered significant research, yet reliable global trends in many physical fields are not yet attainable, despite significant advances in data assimilation and numerical modeling. Oceanic reanalyses have made significant advances in recent years, but will only be discussed here in terms of progress toward integrated Earth system analyses. Climate data sets are generally adequate for process studies and large-scale climate variability. Communication of the strengths, limitations and uncertainties of reprocessed observations and reanalysis data, not only among the community of developers, but also with the extended research community, including the new generations of researchers and the decision makers is crucial for further advancement of the observational data records. It must be emphasized that careful investigation of the data and processing methods are required to use the observations appropriately.
Resumo:
Polar lows are maritime meso-cyclones associated with intense surface wind speeds and oceanic heat fluxes at high latitudes. The ability of the ERA-Interim (ERAI) reanalysis to represent polar lows in the North Atlantic is assessed by comparing ERAI and the ECMWF operational analysis for the period 2008-2011. First, the representation of a set of satellite observed polar lows over the Norwegian and Barents Seas in the operational analysis and ERAI is analysed. Then, the possibility of directly identifying and tracking the polar lows in the operational analysis and ERAI is explored using a tracking algorithm based on 850 hPa vorticity with objective identification criteria on cyclone dynamical intensity and atmospheric static stability. All but one of the satellite observed polar lows with a lifetime of at least 6 hours have an 850 hPa vorticity signature of a co-located mesocyclone in both the operational analysis and ERAI for most of their life cycles. However, the operational analysis has vorticity structures that better resemble the observed cloud patterns and stronger surface wind speed intensities compared to those in ERAI. By applying the objective identification criteria, about 55% of the satellite observed polar lows are identified and tracked in ERAI, while this fraction increases to about 70% in the operational analysis. Particularly in ERAI, the remaining observed polar lows are mainly not identified because they have too weak wind speed and vorticity intensity compared to the tested criteria. The implications of the tendency of ERAI to underestimate the polar low dynamical intensity for future studies of polar lows is discussed.
Resumo:
Precipitation forecast data from the ERA-Interim reanalysis (33 years) are evaluated using the daily England and Wales Precipitation (EWP) observations obtained from a rain gauge network. Observed and reanalysis daily precipitation data are both described well by Weibull distributions with indistinguishable shapes but different scale parameters, such that the reanalysis underestimates the observations by an average factor of 22%. The correlation between the observed and ERA-Interim time series of regional, daily precipitation is 0.91. ERA-Interim also captures the statistics of extreme precipitation including a slightly lower likelihood of the heaviest precipitation events (>15 mm day− 1 for the regional average) than indicated by the Weibull fit. ERA-Interim is also closer to EWP for the high precipitation events. Since these carry weight in longer accumulations, a smaller underestimation of 19% is found for monthly mean precipitation. The partition between convective and stratiform precipitation in the ERA-Interim forecast is also examined. In summer both components contribute equally to the total precipitation amount, while in winter the stratiform precipitation is approximately double convective. These results are expected to be relevant to other regions with low orography on the coast of a continent at the downstream end of mid-latitude stormtracks.
Resumo:
The MATLAB model is contained within the compressed folders (versions are available as .zip and .tgz). This model uses MERRA reanalysis data (>34 years available) to estimate the hourly aggregated wind power generation for a predefined (fixed) distribution of wind farms. A ready made example is included for the wind farm distribution of Great Britain, April 2014 ("CF.dat"). This consists of an hourly time series of GB-total capacity factor spanning the period 1980-2013 inclusive. Given the global nature of reanalysis data, the model can be applied to any specified distribution of wind farms in any region of the world. Users are, however, strongly advised to bear in mind the limitations of reanalysis data when using this model/data. This is discussed in our paper: Cannon, Brayshaw, Methven, Coker, Lenaghan. "Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in Great Britain". Submitted to Renewable Energy in March, 2014. Additional information about the model is contained in the model code itself, in the accompanying ReadMe file, and on our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/
Resumo:
With a rapidly increasing fraction of electricity generation being sourced from wind, extreme wind power generation events such as prolonged periods of low (or high) generation and ramps in generation, are a growing concern for the efficient and secure operation of national power systems. As extreme events occur infrequently, long and reliable meteorological records are required to accurately estimate their characteristics. Recent publications have begun to investigate the use of global meteorological “reanalysis” data sets for power system applications, many of which focus on long-term average statistics such as monthly-mean generation. Here we demonstrate that reanalysis data can also be used to estimate the frequency of relatively short-lived extreme events (including ramping on sub-daily time scales). Verification against 328 surface observation stations across the United Kingdom suggests that near-surface wind variability over spatiotemporal scales greater than around 300 km and 6 h can be faithfully reproduced using reanalysis, with no need for costly dynamical downscaling. A case study is presented in which a state-of-the-art, 33 year reanalysis data set (MERRA, from NASA-GMAO), is used to construct an hourly time series of nationally-aggregated wind power generation in Great Britain (GB), assuming a fixed, modern distribution of wind farms. The resultant generation estimates are highly correlated with recorded data from National Grid in the recent period, both for instantaneous hourly values and for variability over time intervals greater than around 6 h. This 33 year time series is then used to quantify the frequency with which different extreme GB-wide wind power generation events occur, as well as their seasonal and inter-annual variability. Several novel insights into the nature of extreme wind power generation events are described, including (i) that the number of prolonged low or high generation events is well approximated by a Poission-like random process, and (ii) whilst in general there is large seasonal variability, the magnitude of the most extreme ramps is similar in both summer and winter. An up-to-date version of the GB case study data as well as the underlying model are freely available for download from our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/.
Resumo:
The WFDEI meteorological forcing data set has been generated using the same methodology as the widely used WATCH Forcing Data (WFD) by making use of the ERA-Interim reanalysis data. We discuss the specifics of how changes in the reanalysis and processing have led to improvement over the WFD. We attribute improvements in precipitation and wind speed to the latest reanalysis basis data and improved downward shortwave fluxes to the changes in the aerosol corrections. Covering 1979–2012, the WFDEI will allow more thorough comparisons of hydrological and Earth System model outputs with hydrologically and phenologically relevant satellite products than using the WFD.
Resumo:
ERA-Interim/Land is a global land surface reanalysis data set covering the period 1979–2010. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land is the result of a single 32-year simulation with the latest ECMWF (European Centre for Medium-Range Weather Forecasts) land surface model driven by meteorological forcing from the ERA-Interim atmospheric reanalysis and precipitation adjustments based on monthly GPCP v2.1 (Global Precipitation Climatology Project). The horizontal resolution is about 80 km and the time frequency is 3-hourly. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim data set, which makes it more suitable for climate studies involving land water resources. The quality of ERA-Interim/Land is assessed by comparing with ground-based and remote sensing observations. In particular, estimates of soil moisture, snow depth, surface albedo, turbulent latent and sensible fluxes, and river discharges are verified against a large number of site measurements. ERA-Interim/Land provides a global integrated and coherent estimate of soil moisture and snow water equivalent, which can also be used for the initialization of numerical weather prediction and climate models.
Resumo:
The relationship between springtime air pollution transport of ozone (O3) and carbon monoxide (CO) and mid-latitude cyclones is explored for the first time using the Monitoring Atmospheric Composition and Climate (MACC) reanalysis for the period 2003–2012. In this study, the most intense spring storms (95th percentile) are selected for two regions, the North Pacific (NP) and the North Atlantic (NA). These storms (∼60 storms over each region) often track over the major emission sources of East Asia and eastern North America. By compositing the storms, the distributions of O3 and CO within a "typical" intense storm are examined. We compare the storm-centered composite to background composites of "average conditions" created by sampling the reanalysis data of the previous year to the storm locations. Mid-latitude storms are found to redistribute concentrations of O3 and CO horizontally and vertically throughout the storm. This is clearly shown to occur through two main mechanisms: (1) vertical lifting of CO-rich and O3-poor air isentropically, from near the surface to the mid- to upper-troposphere in the region of the warm conveyor belt; and (2) descent of O3-rich and CO-poor air isentropically in the vicinity of the dry intrusion, from the stratosphere toward the mid-troposphere. This can be seen in the composite storm's life cycle as the storm intensifies, with area-averaged O3 (CO) increasing (decreasing) between 200 and 500 hPa. The influence of the storm dynamics compared to the background environment on the composition within an area around the storm center at the time of maximum intensity is as follows. Area-averaged O3 at 300 hPa is enhanced by 50 and 36% and by 11 and 7.6% at 500 hPa for the NP and NA regions, respectively. In contrast, area-averaged CO at 300 hPa decreases by 12% for NP and 5.5% for NA, and area-averaged CO at 500 hPa decreases by 2.4% for NP while there is little change over the NA region. From the mid-troposphere, O3-rich air is clearly seen to be transported toward the surface, but the downward transport of CO-poor air is not discernible due to the high levels of CO in the lower troposphere. Area-averaged O3 is slightly higher at 1000 hPa (3.5 and 1.8% for the NP and NA regions, respectively). There is an increase of CO at 1000 hPa for the NP region (3.3%) relative to the background composite and a~slight decrease in area-averaged CO for the NA region at 1000 hPa (-2.7%).