38 resultados para reactive metabolite
Resumo:
The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period. This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental). Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv (note the non-IUPAC adoption in this manuscript of pptv and ppbv, equivalent to pmol mol−1 and nmol mol−1 to reflect common practice). Consistency with these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens. Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.
Resumo:
The olive oil polyphenol, hydroxytyrosol (HT), is believed to be capable of exerting protection against oxidative kidney injury. In this study we have investigated the ability of HT and its O-methylated metabolite, homovanillic alcohol (HVA) to protect renal cells against oxidative damage induced by hydrogen peroxide. We show that both compounds were capable of inhibiting hydrogen peroxide-induced kidney cell injury via an ability to interact with both MAP kinase and PI3 kinase signalling pathways, albeit at different concentrations. HT strongly inhibited death and prevented peroxide-induced increases in ERK1/2 and JNK1/2/3 phosphorylation at 0.3 microM, whilst HVA was effective at 10 microM. At similar concentrations, both compounds also prevented peroxide-induced reductions in Akt phosphorylation. We suggest that one potential protective effect exerted by olive oil polyphenols against oxidative kidney cell injury may be attributed to the interactions of HT and HVA with these important intracellular signalling pathways.
Resumo:
The ultraviolet A component of sunlight causes both acute and chronic damage to human skin. In this study the potential of epicatechin, an abundant dietary flavanol, and 3'-O-methyl epicatechin, one of its major in vivo metabolites, to protect against UVA-induced damage was examined using cultured human skin fibroblasts as an in vitro model. The results obtained clearly show that both epicatechin and its metabolite protect these fibroblasts against UVA damage and cell death. The hydrogen-donating antioxidant properties of these compounds are probably not the mediators of this protective response. The protection is a consequence of induction of resistance to UVA mediated by the compounds and involves newly synthesized proteins. The study provides clear evidence that this dietary flavanol has the potential to protect human skin against the deleterious effects of sunlight.
Resumo:
The present study has examined the possibility that the positional distribution of fatty acids on dietary triacyglycerol (TAG) influences the postprandial response to a liquid meal in adult subjects. Postprandial TAG, non-esterified fatty acids (NEFA), ketones, glucose, insulin and gastric inhibitory polypeptide (GIP) responses were monitored in sixteen normal adult male subjects over 6 h following consumption of test meals containing dietary TAG in which palmitic acid was predominantly on the sn-1 (Control) or sn-2 positions (Betapol). Plasma total TAG, chylomicron-rich TAG and chylomicron-poor TAG concentrations were identical in response to the two test meals. The peak increase (mean (SD)) in chylomicron TAG was 0.85 (0.46) mmol/l after the Control meal and 0.85 (0.42) mmol/l after the Betapol meal. Plasma glucose, insulin, GIP, NEFA and ketone concentrations were also very similar following the two meals. It is concluded that dietary TAG containing saturated fatty acids on the sn-2 position appear in plasma at a similar level and over a similar timescale to TAG in which saturated fatty acids are predominantly located on sn-1 or sn-3 positions. The results reported in the present study demonstrate that the positional distribution of fatty acids on dietary TAG is not an important determinant of postprandial lipaemia in adult male subjects, but do not exclude the possibility that different responses may occur when these dietary TAG are given long term.
Resumo:
The Chinese medicinal plant Artemisia annua L. (Qinghao) is the only known source of the sesquiterpene artemisinin (Qinghaosu), which is used in the treatment of malaria. Artemisinin is a highly oxygenated sesquiterpene, containing a unique 1,2,4-trioxane ring structure, which is responsible for the antimalarial activity of this natural product. The phytochemistry of A. annua is dominated by both sesquiterpenoids and flavonoids, as is the case for many other plants in the Asteraceae family. However, A. annua is distinguished from the other members of the family both by the very large number of natural products which have been characterised to date (almost six hundred in total, including around fifty amorphane and cadinane sesquiterpenes), and by the highly oxygenated nature of many of the terpenoidal secondary metabolites. In addition, this species also contains an unusually large number of terpene allylic hydroperoxides and endoperoxides. This observation forms the basis of a proposal that the biogenesis of many of the highly oxygenated terpene metabolites from A. annua - including artemisinin itself may proceed by spontaneous oxidation reactions of terpene precursors, which involve these highly reactive allyllic hydroperoxides as intermediates. Although several studies of the biosynthesis of artemisinin have been reported in the literature from the 1980s and early 1990s, the collective results from these studies were rather confusing because they implied that an unfeasibly large number of different sesquiterpenes could all function as direct precursors to artemisinin (and some of the experiments also appeared to contradict one another). As a result, the complete biosynthetic pathway to artemisinin could not be stated conclusively at the time. Fortunately, studies which have been published in the last decade are now providing a clearer picture of the biosynthetic pathways in A. annua. By synthesising some of the sesquiterpene natural products which have been proposed as biogenetic precursors to artemisinin in such a way that they incorporate a stable isotopic label, and then feeding these precursors to intact A. annua plants, it has now been possible to demonstrate that dihydroartemisinic acid is a late-stage precursor to artemisinin and that the closely related secondary metabolite, artemisinic acid, is not (this approach differs from all the previous studies, which used radio-isotopically labelled precursors that were fed to a plant homogenate or a cell-free preparation). Quite remarkably, feeding experiments with labeled dihydroartemisinic acid and artemisinic acid have resulted in incorporation of label into roughly half of all the amorphane and cadinane sesquiterpenes which were already known from phytochemical studies of A. annua. These findings strongly support the hypothesis that many of the highly oxygenated sesquiterpenoids from this species arise by oxidation reactions involving allylic hydroperoxides, which seem to be such a defining feature of the chemistry of A. annua. In the particular case of artemisinin, these in vivo results are also supported by in vitro studies, demonstrating explicitly that the biosynthesis of artemisinin proceeds via the tertiary allylic hydroperoxide, which is derived from oxidation of dihydroartemisinic acid. There is some evidence that the autoxidation of dihydroartemisinic acid to this tertiary allylic hydroperoxide is a non-enzymatic process within the plant, requiring only the presence of light; and, furthermore, that the series of spontaneous rearrangement reactions which then convert thi allylic hydroperoxide to the 1,2,4-trioxane ring of artemisinin are also non-enzymatic in nature.
Resumo:
This paper describes the design, implementation and testing of a high speed controlled stereo “head/eye” platform which facilitates the rapid redirection of gaze in response to visual input. It details the mechanical device, which is based around geared DC motors, and describes hardware aspects of the controller and vision system, which are implemented on a reconfigurable network of general purpose parallel processors. The servo-controller is described in detail and higher level gaze and vision constructs outlined. The paper gives performance figures gained both from mechanical tests on the platform alone, and from closed loop tests on the entire system using visual feedback from a feature detector.
Resumo:
The ability to undertake repeat measurements of flow-mediated dilatation (FMD) within a short time of a previous measurement would be useful to improve accuracy or to repeat a failed initial procedure. Although standard methods report that a minimum of 10 min is required between measurements, there is no published data to support this. Thirty healthy volunteers had five FMD measurements performed within a 2-h period, separated by various time intervals (5, 15 and 30 min). In 19 volunteers, FMD was also performed as soon as the vessel had returned to its baseline diameter. There was no significant difference between any of the FMD measurements or parameters across the visits indicating that repeat measurements may be taken after a minimum of 5 min or as soon as the vessel has returned to its baseline diameter, which in some subjects may be less than 5 min.
Resumo:
Background Riluzole is a neuroprotective drug used in the treatment of motor neurone disease. Recent evidence suggests that riluzole can up-regulate the expression and activity of the astrocyte glutamate transporter, GLT-1. Given that regulation of glutamate transport is predicted to be neuroprotective in Parkinson's disease, we tested the effect of riluzole in parkinsonian rats which had received a unilateral 6-hydroxydopamine injection into the median forebrain bundle. Results Rats were treated with intraperitoneal riluzole (4 mg/kg or 8 mg/kg), 1 hour before the lesion then once daily for seven days. Riluzole produced a modest but significant attenuation of dopamine neurone degeneration, assessed by suppression of amphetamine-induced rotations, preservation of tyrosine hydroxylase positive neuronal cell bodies in the substantia nigra pars compacta and attenuation of striatal tyrosine hydroxylase protein loss. Seven days after 6-hydroxydopamine lesion, reactive astrocytosis was observed in the striatum, as determined by increases in expression of glial fibrillary acidic protein, however the glutamate transporter, GLT-1, which is also expressed in astrocytes was not regulated by the lesion. Conclusions The results confirm that riluzole is a neuroprotective agent in a rodent model of parkinson’s disease. Riluzole administration did not regulate GLT-1 levels but significantly reduced GFAP levels, in the lesioned striatum. Riluzole suppression of reactive astrocytosis is an intriguing finding which might contribute to the neuroprotective effects of this drug.
Resumo:
Background: The response of plasma lipids to dietary fat manipulation is highly heterogeneous, with some indications that APOE genotype may be important. Objective: The objective was to use a prospective recruitment approach to determine the effect of dietary fat quantity and composition on both lipid and nonlipid cardiovascular disease biomarkers according to APOE genotype. Design: Participants had a mean (±SD) age of 51 ± 9 y and a BMI (in kg/m2) of 26.0 ± 3.8 (n = 44 E3/E3, n = 44 E3/E4) and followed a sequential dietary intervention (the SATgenϵ study) in which they were assigned to a low-fat diet, a high-fat high-SFA (HSF) diet, and the HSF diet with 3.45 g DHA/d (HSF-DHA), each for 8 wk. Fasting blood samples were collected at the end of each intervention arm. Results: An overall diet effect was evident for all cholesterol fractions (P < 0.01), with no significant genotype × diet interactions observed. A genotype × diet interaction (P = 0.033) was evident for plasma triglycerides, with 17% and 30% decreases in APOE3/E3 and APOE3/E4 individuals after the HSF-DHA diet relative to the low-fat diet. A significant genotype × diet interaction (P = 0.009) was also observed for C-reactive protein (CRP), with only significant increases in concentrations after the HSF and HSF-DHA diets relative to the low-fat diet in the APOE3/E4 group (P < 0.015). Conclusions: Relative to the wild-type APOE3/E3 group, our results indicate a greater sensitivity of fasting triglycerides and CRP to dietary fat manipulation in those with an APOE3/E4 genotype (25% population), with no effect of this allelic profile on cholesterol concentrations. The SATgenϵ study was registered at clinicaltrials.gov as NCT01384032.
Resumo:
Although neurokinin 1 receptor antagonists prevent ethanol (EtOH)-induced gastric lesions, the mechanisms by which EtOH releases substance P (SP) and SP damages the mucosa are unknown. We hypothesized that EtOH activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to release SP, which stimulates epithelial neurokinin 1 receptors to generate damaging reactive oxygen species (ROS). SP release was assayed in the mouse stomach, ROS were detected using dichlorofluorescein diacetate, and neurokinin 1 receptors were localized by immunofluorescence. EtOH-induced SP release was prevented by TRPV1 antagonism. High dose EtOH caused lesions, and TRPV1 or neurokinin 1 receptor antagonism and neurokinin 1 receptor deletion inhibited lesion formation. Coadministration of low, innocuous doses of EtOH and SP caused lesions by a TRPV1-independent but neurokinin 1 receptor-dependent process. EtOH, capsaicin, and SP stimulated generation of ROS by superficial gastric epithelial cells expressing neurokinin 1 receptors by a neurokinin 1 receptor-dependent mechanism. ROS scavengers prevented lesions induced by a high EtOH dose or a low EtOH dose plus SP. Gastric lesions are caused by an initial detrimental effect of EtOH, which is damaging only if associated with TRPV1 activation, SP release from sensory nerves, stimulation of neurokinin 1 receptors on epithelial cells, and ROS generation.
Resumo:
Conditions of stress, such as myocardial infarction, stimulate up-regulation of heme oxygenase (HO-1) to provide cardioprotection. Here, we show that CO, a product of heme catabolism by HO-1, directly inhibits native rat cardiomyocyte L-type Ca2+ currents and the recombinant alpha1C subunit of the human cardiac L-type Ca2+ channel. CO (applied via a recognized CO donor molecule or as the dissolved gas) caused reversible, voltage-independent channel inhibition, which was dependent on the presence of a spliced insert in the cytoplasmic C-terminal region of the channel. Sequential molecular dissection and point mutagenesis identified three key cysteine residues within the proximal 31 amino acids of the splice insert required for CO sensitivity. CO-mediated inhibition was independent of nitric oxide and protein kinase G but was prevented by antioxidants and the reducing agent, dithiothreitol. Inhibition of NADPH oxidase and xanthine oxidase did not affect the inhibitory actions of CO. Instead, inhibitors of complex III (but not complex I) of the mitochondrial electron transport chain and a mitochondrially targeted antioxidant (Mito Q) fully prevented the effects of CO. Our data indicate that the cardioprotective effects of HO-1 activity may be attributable to an inhibitory action of CO on cardiac L-type Ca2+ channels. Inhibition arises from the ability of CO to promote generation of reactive oxygen species from complex III of mitochondria. This in turn leads to redox modulation of any or all of three critical cysteine residues in the channel's cytoplasmic C-terminal tail, resulting in channel inhibition.
Resumo:
Microbial metabolism of proteins and amino acids by human gut bacteria generates a variety of compounds including phenol, indole, and sulfur compounds and branched chain fatty acids, many of which have been shown to elicit a toxic effect on the lumen. Bacterial fermentation of amino acids and proteins occurs mainly in the distal colon, a site that is often fraught with symptoms from disorders including ulcerative colitis (UC) and colorectal cancer (CRC). In contrast to carbohydrate metabolism by the gut microbiota, proteolysis is less extensively researched. Many metabolites are low molecular weight, volatile compounds. This review will summarize the use of analytical methods to detect and identify compounds in order to elucidate the relationship between specific dietary proteinaceous substrates, their corresponding metabolites, and implications for gastrointestinal health.
Resumo:
Hippurate, the glycine conjugate of benzoic acid, is a normal constituent of the endogenous urinary metabolite profile and has long been associated with the microbial degradation of certain dietary components, hepatic function and toluene exposure, and is also commonly used as a measure of renal clearance. Here we discuss the potential relevance of hippurate excretion with regards to normal endogenous metabolism and trends in excretion relating to gender, age, and the intestinal microbiota. Additionally, the significance of hippurate excretion with regards to disease states including obesity, diabetes, gastrointestinal diseases, impaired renal function, psychological disorders and autism, as well as toxicity and parasitic infection, are considered.