20 resultados para range uncertainty
Resumo:
Radar refractivity retrievals can capture near-surface humidity changes, but noisy phase changes of the ground clutter returns limit the accuracy for both klystron- and magnetron-based systems. Observations with a C-band (5.6 cm) magnetron weather radar indicate that the correction for phase changes introduced by local oscillator frequency changes leads to refractivity errors no larger than 0.25 N units: equivalent to a relative humidity change of only 0.25% at 20°C. Requested stable local oscillator (STALO) frequency changes were accurate to 0.002 ppm based on laboratory measurements. More serious are the random phase change errors introduced when targets are not at the range-gate center and there are changes in the transmitter frequency (ΔfTx) or the refractivity (ΔN). Observations at C band with a 2-μs pulse show an additional 66° of phase change noise for a ΔfTx of 190 kHz (34 ppm); this allows the effect due to ΔN to be predicted. Even at S band with klystron transmitters, significant phase change noise should occur when a large ΔN develops relative to the reference period [e.g., ~55° when ΔN = 60 for the Next Generation Weather Radar (NEXRAD) radars]. At shorter wavelengths (e.g., C and X band) and with magnetron transmitters in particular, refractivity retrievals relative to an earlier reference period are even more difficult, and operational retrievals may be restricted to changes over shorter (e.g., hourly) periods of time. Target location errors can be reduced by using a shorter pulse or identified by a new technique making alternate measurements at two closely spaced frequencies, which could even be achieved with a dual–pulse repetition frequency (PRF) operation of a magnetron transmitter.
Resumo:
The evidence for anthropogenic climate change continues to strengthen, and concerns about severe weather events are increasing. As a result, scientific interest is rapidly shifting from detection and attribution of global climate change to prediction of its impacts at the regional scale. However, nearly everything we have any confidence in when it comes to climate change is related to global patterns of surface temperature, which are primarily controlled by thermodynamics. In contrast, we have much less confidence in atmospheric circulation aspects of climate change, which are primarily controlled by dynamics and exert a strong control on regional climate. Model projections of circulation-related fields, including precipitation, show a wide range of possible outcomes, even on centennial timescales. Sources of uncertainty include low-frequency chaotic variability and the sensitivity to model error of the circulation response to climate forcing. As the circulation response to external forcing appears to project strongly onto existing patterns of variability, knowledge of errors in the dynamics of variability may provide some constraints on model projections. Nevertheless, higher scientific confidence in circulation-related aspects of climate change will be difficult to obtain. For effective decision-making, it is necessary to move to a more explicitly probabilistic, risk-based approach.
Resumo:
The quantification of uncertainty is an increasingly popular topic, with clear importance for climate change policy. However, uncertainty assessments are open to a range of interpretations, each of which may lead to a different policy recommendation. In the EQUIP project researchers from the UK climate modelling, statistical modelling, and impacts communities worked together on ‘end-to-end’ uncertainty assessments of climate change and its impacts. Here, we use an experiment in peer review amongst project members to assess variation in the assessment of uncertainties between EQUIP researchers. We find overall agreement on key sources of uncertainty but a large variation in the assessment of the methods used for uncertainty assessment. Results show that communication aimed at specialists makes the methods used harder to assess. There is also evidence of individual bias, which is partially attributable to disciplinary backgrounds. However, varying views on the methods used to quantify uncertainty did not preclude consensus on the consequential results produced using those methods. Based on our analysis, we make recommendations for developing and presenting statements on climate and its impacts. These include the use of a common uncertainty reporting format in order to make assumptions clear; presentation of results in terms of processes and trade-offs rather than only numerical ranges; and reporting multiple assessments of uncertainty in order to elucidate a more complete picture of impacts and their uncertainties. This in turn implies research should be done by teams of people with a range of backgrounds and time for interaction and discussion, with fewer but more comprehensive outputs in which the range of opinions is recorded.
Resumo:
Methods to explicitly represent uncertainties in weather and climate models have been developed and refined over the past decade, and have reduced biases and improved forecast skill when implemented in the atmospheric component of models. These methods have not yet been applied to the land surface component of models. Since the land surface is strongly coupled to the atmospheric state at certain times and in certain places (such as the European summer of 2003), improvements in the representation of land surface uncertainty may potentially lead to improvements in atmospheric forecasts for such events. Here we analyse seasonal retrospective forecasts for 1981–2012 performed with the European Centre for Medium-Range Weather Forecasts’ (ECMWF) coupled ensemble forecast model. We consider two methods of incorporating uncertainty into the land surface model (H-TESSEL): stochastic perturbation of tendencies, and static perturbation of key soil parameters. We find that the perturbed parameter approach considerably improves the forecast of extreme air temperature for summer 2003, through better representation of negative soil moisture anomalies and upward sensible heat flux. Averaged across all the reforecasts the perturbed parameter experiment shows relatively little impact on the mean bias, suggesting perturbations of at least this magnitude can be applied to the land surface without any degradation of model climate. There is also little impact on skill averaged across all reforecasts and some evidence of overdispersion for soil moisture. The stochastic tendency experiments show a large overdispersion for the soil temperature fields, indicating that the perturbation here is too strong. There is also some indication that the forecast of the 2003 warm event is improved for the stochastic experiments, however the improvement is not as large as observed for the perturbed parameter experiment.
Resumo:
Model simulations of the next few decades are widely used in assessments of climate change impacts and as guidance for adaptation. Their non-linear nature reveals a level of irreducible uncertainty which it is important to understand and quantify, especially for projections of near-term regional climate. Here we use large idealised initial condition ensembles of the FAMOUS global climate model with a 1 %/year compound increase in CO2 levels to quantify the range of future temperatures in model-based projections. These simulations explore the role of both atmospheric and oceanic initial conditions and are the largest such ensembles to date. Short-term simulated trends in global temperature are diverse, and cooling periods are more likely to be followed by larger warming rates. The spatial pattern of near-term temperature change varies considerably, but the proportion of the surface showing a warming is more consistent. In addition, ensemble spread in inter-annual temperature declines as the climate warms, especially in the North Atlantic. Over Europe, atmospheric initial condition uncertainty can, for certain ocean initial conditions, lead to 20 year trends in winter and summer in which every location can exhibit either strong cooling or rapid warming. However, the details of the distribution are highly sensitive to the ocean initial condition chosen and particularly the state of the Atlantic meridional overturning circulation. On longer timescales, the warming signal becomes more clear and consistent amongst different initial condition ensembles. An ensemble using a range of different oceanic initial conditions produces a larger spread in temperature trends than ensembles using a single ocean initial condition for all lead times. This highlights the potential benefits from initialising climate predictions from ocean states informed by observations. These results suggest that climate projections need to be performed with many more ensemble members than at present, using a range of ocean initial conditions, if the uncertainty in near-term regional climate is to be adequately quantified.