82 resultados para quality of ensilage
Resumo:
The effect of adding strobilurins to a triazole (epoxiconazole) fungicide programme on the quality of a range of wheat cultivars was assessed in field experiments in three successive years. Strobilurin was applied at just flag leaf emergence (azoxystrobin) or at the start of stem extension (azoxystrobin or picoxystrobin) and again at flag leaf emergence or at flag leaf emergence and again at ear emergence (azoxystrobin). All strobilurin treatments reduced disease levels, delayed senescence of the flag leaf and consistently increased yields, thousand grain weight and specific weight. Reductions in Hagberg falling number were observed, even by fungicide applications at the start of stem extension, but effects were small compared to the variation among cultivars. Application of fungicide (triazole or strobilurin) before ear emergence increased the amount of blackpoint, but this was partly countered by applying azoxystrobin at ear emergence. The effect of fungicide on protein concentration differed over seasons and cultivar. Where they occurred. small reductions in protein concentration could be compensated for by extra application of nitrogen as foliar urea at anthesis. Foliar urea (40 kg N ha(-1)) applied at anthesis also improved Hagberg failing number and reduced blackpoint in one of the growing seasons. In one season, the effect of foliar urea at anthesis was compared with applications of granular fertiliser at flag leaf emergence. The granular treatment produced grain with more concentrated protein, while the later, foliar application produced higher specific weights. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The effects of temperature and light integral on fruit growth and development of five cacao genotypes (Amelonado, AMAZ 15/15, SCA 6, SPEC 54/1 and UF 676) were studied in semi-controlled environment glasshouses in which the thermal regimes of cacao-growing regions of Brazil, Ghana and Malaysia were simulated. Fruit losses because of physiological will (cherelle will) were greater at higher temperatures and also differed significantly between genotypes, reflecting genetic differences in competition for assimilates between vegetative and reproductive components. Short-term measurements of fruit growth indicated faster growth rates at higher temperatures. In addition, a significant negative linear relationship between temperature and development time was observed. There was an effect of genotype on this relationship, such that time to fruit maturation at a given temperature was greatest for the clone UF 676 and least for AMAZ 15/15. Analysis of base temperatures, derived from these relationships indicated genetic variability in sensitivity of cacao fruit growth to temperature (base temperatures ranged from 7.5 degrees C for Amelonado and AMAZ 15/15 to 12.9 for SPEC 54/1). Final fruit size was a positive function of beam number for all genotypes and a positive function of light integral for Amelonado in the Malaysia simulated environment (where the temperature was almost constant). In simulated environments where temperature was the main variable (Brazil and Ghana) increases in temperature resulted in a significant decrease in final pod size for one genotype (Amelonado) in Brazil and for two genotypes (SPEC 54/1 and UF 676) in Ghana. It was hypothesised that pod growth duration (mediated by temperature), assimilation and beam number are all determinants of final pod size but that under specific conditions one of these factors may override the others. There was variability between genotypes in the response of beam size and beam lipid content to temperature. Negative relationships between temperature and bean size were found for Amelonado and UF 676. Lipid concentration was a curvilinear function of temperature for Amelonado and UF 676, with optimal temperatures of 23 degrees C and 24 degrees C, respectively. The variability observed here of different cacao genotypes to temperature highlights the need and opportunities for appropriate matching of planting material with local environments.
Resumo:
Many nations are experiencing rapid rises in the life expectancy of their citizens. The implications of this major demographic shift are considerable offering opportunities as well as challenges to reconsider how people should spend their later years. A key task is enhancing the quality of life of older people through enabling them to continue to live independently even though illness, accident or frailty may have severely reduced their physical and sensory abilities and, possibly, mental health. Yet the needs of older people and disabled people have been largely ignored in the design of everyday consumer products, the home, transport systems and the built environment in general. Whilst the need for designers, engineers and technologists to provide products, environments and systems which are inclusive of all members of society is widely accepted, there is little understanding of how this can be achieved. In 1998 the UK Engineering and Physical Sciences Research Council established its EQUAL Initiative. This has encouraged design, engineering and technology researchers in universities to join with their colleagues from the social, medical and health sciences to investigate a wide range of issues experienced by older and disabled people and to propose solutions. Their research, which directly involves older and disabled people and, for example, social housing providers, social services departments, charities, engineering and architectural consultants, and transport firms, has been extremely successful. In a very short time it has influenced government policy on housing, long-term care, and building standards, and findings have been taken up by architects, designers, health-care professionals and bodies which represent older and disabled people.
Effect of internal partitioning on indoor air quality of rooms with mixing ventilation - basic study
Resumo:
The internal partitioning, which is frequently introduced in open-space planning due to its flexibility, was tested to study its effects on the room air quality as well as ventilation performance. For the study, physical tests using a small model room and numerical modeling using CFD computation were utilized to evaluate different test conditions employing mixing ventilation from the ceiling. The partition parameters, such as its location, height, and the gap underneath, as well as contaminant source location were tested under isothermal conditions. This paper summarizes the results from the study.
Resumo:
Field experiments were conducted over 3 years to study the effect of applying triazole and strobilurin fungicides on the bread-making quality of Malacca winter wheat. Averaged over all years the application of a fungicide programme increased yields, particularly when strobilurin fungicides were applied. Reductions in protein concentration, sulphur concentration, Hageberg failing number and loaf volumes also occurred as the amount of fungicide applied increased. However, there were no deleterious effects of fungicide application on sodium dodecyl sulphate (SDS) sedimentation volumes, N:S ratios or dough theology. Effects of fungicide application on bread-making quality were not product specific. Therefore, it appears that new mechanisms to explain strobilurin effects on bread-making quality do not need to be invoked. Where reductions in protein concentration did occur they could be compensated for by a late-season application of nitrogen either as granular ammonium nitrate at flag leaf emergence or foliar urea at anthesis. These applications, however, sometimes increased the N:S ratio of the extracted flour and failed to improve loaf volume. Multiple regression analysis revealed that main effects of year, flour protein concentration and N:S ratio could explain 93% of the variance in loaf volume caused by season, fungicide and nitrogen treatments. However, an equally good fit was achieved by just including sulphur concentration with year. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fractionation and reconstitution techniques were used to study the contribution of enclogenous flour lipids to the quality of semisweet (Rich Tea-type) biscuits. Biscuit flour was defatted with chloroform and baked with bakery fat but without enclogenous lipid addition. Semisweet biscuits baked from defatted flour were flatter, denser, and harder and showed collapse of gas cells during baking when compared with control biscuits. Defatted flour semisweet doughs exhibited a different rheological behavior from the control samples showing higher storage and loss moduli (G' and G" values), that is, high viscoelasticity. Functionality was restored when total nonstarch flour lipids were added back to defatted flour. Both the polar and nonpolar lipid fractions had positive effects in restoring flour quality, but the polar lipid fraction was of greatest benefit. Both fractions were needed for complete restoration of both biscuit quality and dough rheological characteristics.
Resumo:
Fractionation and reconstitution techniques were used to study the contribution of endogenous flour lipids to the quality of short-dough (shortcake type) biscuits. Biscuit flour was defatted with chloroform and baked with bakery fat, but without endogenous lipid. Short-dough biscuits baked from defatted flour had smaller diameters, and were flatter, denser and harder than control biscuits. Defatted flour shortcake doughs exhibited different rheological behaviour from the control samples, showing higher storage and loss moduli (G' and G" values), ie higher viscoelasticity. Functionality was restored when total non-starch flour lipids were added back to defatted flour. The polar lipid fraction had a positive effect in restoring flour quality whereas the non-polar lipid fraction had no effect. Both fractions were needed for complete restoration of both biscuit quality and dough rheological characteristics. A study of the microstructure of defatted biscuits revealed that their gluten protein was more hydrated and developed than the gluten of the control biscuits. This conclusion was supported by the higher water absorption of the defatted gluten. (C) 2004 Society of Chemical Industry.
Resumo:
The effects of milk protein fortification on the texture and microstructure of cottage cheese curd were evaluated. Protein powder (92.6% protein) was added to the skim milk at a level of 0.4% (w/w) to produce curds. Control curds with no protein powder addition were also produced. These curds were analysed for differences in yield, total solids, curd size, texture and structure. It was found that the addition of protein powder contributed to a significant yield increase, which can be attributed to increased water retention, with better curd size distribution. Control curds were firmer than the fortified curds and the structure showed less open-pore structure as revealed by electron microscopy. However, the addition of dressing masked the textural differences, and a sensory panel was unable to distinguish between cheeses produced from fortified milk and controls.