50 resultados para proof of knowledge
Resumo:
The project investigated whether it would be possible to remove the main technical hindrance to precision application of herbicides to arable crops in the UK, namely creating geo-referenced weed maps for each field. The ultimate goal is an information system so that agronomists and farmers can plan precision weed control and create spraying maps. The project focussed on black-grass in wheat, but research was also carried out on barley and beans and on wild-oats, barren brome, rye-grass, cleavers and thistles which form stable patches in arable fields. Farmers may also make special efforts to control them. Using cameras mounted on farm machinery, the project explored the feasibility of automating the process of mapping black-grass in fields. Geo-referenced images were captured from June to December 2009, using sprayers, a tractor, combine harvesters and on foot. Cameras were mounted on the sprayer boom, on windows or on top of tractor and combine cabs and images were captured with a range of vibration levels and at speeds up to 20 km h-1. For acceptability to farmers, it was important that every image containing black-grass was classified as containing black-grass; false negatives are highly undesirable. The software algorithms recorded no false negatives in sample images analysed to date, although some black-grass heads were unclassified and there were also false positives. The density of black-grass heads per unit area estimated by machine vision increased as a linear function of the actual density with a mean detection rate of 47% of black-grass heads in sample images at T3 within a density range of 13 to 1230 heads m-2. A final part of the project was to create geo-referenced weed maps using software written in previous HGCA-funded projects and two examples show that geo-location by machine vision compares well with manually-mapped weed patches. The consortium therefore demonstrated for the first time the feasibility of using a GPS-linked computer-controlled camera system mounted on farm machinery (tractor, sprayer or combine) to geo-reference black-grass in winter wheat between black-grass head emergence and seed shedding.
Resumo:
The retention of peatland carbon (C) and the ability to continue to draw down and store C from the atmosphere is not only important for the UK terrestrial carbon inventory, but also for a range of ecosystem services, the landscape value and the ecology and hydrology of ~15% of the land area of the UK. Here we review the current state of knowledge on the C balance of UK peatlands using several studies which highlight not only the importance of making good flux measurements, but also the spatial and temporal variability of different flux terms that characterise a landscape affected by a range of natural and anthropogenic processes and threats. Our data emphasise the importance of measuring (or accurately estimating) all components of the peatland C budget. We highlight the role of the aquatic pathway and suggest that fluxes are higher than previously thought. We also compare the contemporary C balance of several UK peatlands with historical rates of C accumulation measured using peat cores, thus providing a long-term context for present-day measurements and their natural year-on-year variability. Contemporary measurements from 2 sites suggest that current accumulation rates (–56 to –72 g C m–2 yr–1) are at the lower end of those seen over the last 150 yr in peat cores (–35 to –209 g C m–2 yr–1). Finally, we highlight significant current gaps in knowledge and identify where levels of uncertainty are high, as well as emphasise the research challenges that need to be addressed if we are to improve the measurement and prediction of change in the peatland C balance over future decades.
Resumo:
Another Proof of the Preceding Theory was produced as part of a residency run by Artists in Archeology in conjunction with the Stonehenge Riverside project. The film explores the relationship between science, work and ritual, imagining archaeology as a future cult. As two robed disciples stray off from the dig, they are drawn to the drone of the stones and proceed to play the henge like a gigantic Theremin. Just as a Theremin is played with the hand interfering in an electric circuit and producing sound without contact, so the stones respond to the choreographed bodily proximity. Finally, one of the two continues alone to the avenue at Avebury, where the magnetic pull of the stones reaches its climax. Shot on VHS, the film features a score by Zuzushi Monkey, with percussion and theremin sounds mirroring the action. The performers are mostly artists and archeologists from the art and archaeology teams. The archeologists were encouraged to perform their normal work in the robes, in an attempt to explore the meeting points of science and ritual and interrogate our relationship to an ultimately unknowable prehistoric past where activities we do not understand are relegated to the realm of religion. Stonehenge has unique acoustic properties, it’s large sarsen stones are finely worked on the inside, left rough on the outside, intensifying sound waves within the inner horseshoe, but since their real use, having been built over centuries, remains ambiguous, the film proposes that our attempts to decode them may themselves become encoded in their cumulative meaning for future researchers.
Information systems requirements in support of the firm's portfolio of knowledge-driven capabilities