62 resultados para predictive compensation
Resumo:
This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.
Resumo:
An automatic nonlinear predictive model-construction algorithm is introduced based on forward regression and the predicted-residual-sums-of-squares (PRESS) statistic. The proposed algorithm is based on the fundamental concept of evaluating a model's generalisation capability through crossvalidation. This is achieved by using the PRESS statistic as a cost function to optimise model structure. In particular, the proposed algorithm is developed with the aim of achieving computational efficiency, such that the computational effort, which would usually be extensive in the computation of the PRESS statistic, is reduced or minimised. The computation of PRESS is simplified by avoiding a matrix inversion through the use of the orthogonalisation procedure inherent in forward regression, and is further reduced significantly by the introduction of a forward-recursive formula. Based on the properties of the PRESS statistic, the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation. Numerical examples are used to demonstrate the efficacy of the algorithm.
Resumo:
In this paper stability of one-step ahead predictive controllers based on non-linear models is established. It is shown that, under conditions which can be fulfilled by most industrial plants, the closed-loop system is robustly stable in the presence of plant uncertainties and input–output constraints. There is no requirement that the plant should be open-loop stable and the analysis is valid for general forms of non-linear system representation including the case out when the problem is constraint-free. The effectiveness of controllers designed according to the algorithm analyzed in this paper is demonstrated on a recognized benchmark problem and on a simulation of a continuous-stirred tank reactor (CSTR). In both examples a radial basis function neural network is employed as the non-linear system model.
Resumo:
A discrete-time algorithm is presented which is based on a predictive control scheme in the form of dynamic matrix control. A set of control inputs are calculated and made available at each time instant, the actual input applied being a weighted summation of the inputs within the set. The algorithm is directly applicable in a self-tuning format and is therefore suitable for slowly time-varying systems in a noisy environment.
Resumo:
Predictive controllers are often only applicable for open-loop stable systems. In this paper two such controllers are designed to operate on open-loop critically stable systems, each of which is used to find the control inputs for the roll control autopilot of a jet fighter aircraft. It is shown how it is quite possible for good predictive control to be achieved on open-loop critically stable systems.
Resumo:
A nonlinear general predictive controller (NLGPC) is described which is based on the use of a Hammerstein model within a recursive control algorithm. A key contribution of the paper is the use of a novel, one-step simple root solving procedure for the Hammerstein model, this being a fundamental part of the overall tuning algorithm. A comparison is made between NLGPC and nonlinear deadbeat control (NLDBC) using the same one-step nonlinear components, in order to investigate NLGPC advantages and disadvantages.
Resumo:
The use of data reconciliation techniques can considerably reduce the inaccuracy of process data due to measurement errors. This in turn results in improved control system performance and process knowledge. Dynamic data reconciliation techniques are applied to a model-based predictive control scheme. It is shown through simulations on a chemical reactor system that the overall performance of the model-based predictive controller is enhanced considerably when data reconciliation is applied. The dynamic data reconciliation techniques used include a combined strategy for the simultaneous identification of outliers and systematic bias.
Resumo:
In industrial practice, constrained steady state optimisation and predictive control are separate, albeit closely related functions within the control hierarchy. This paper presents a method which integrates predictive control with on-line optimisation with economic objectives. A receding horizon optimal control problem is formulated using linear state space models. This optimal control problem is very similar to the one presented in many predictive control formulations, but the main difference is that it includes in its formulation a general steady state objective depending on the magnitudes of manipulated and measured output variables. This steady state objective may include the standard quadratic regulatory objective, together with economic objectives which are often linear. Assuming that the system settles to a steady state operating point under receding horizon control, conditions are given for the satisfaction of the necessary optimality conditions of the steady-state optimisation problem. The method is based on adaptive linear state space models, which are obtained by using on-line identification techniques. The use of model adaptation is justified from a theoretical standpoint and its beneficial effects are shown in simulations. The method is tested with simulations of an industrial distillation column and a system of chemical reactors.
Resumo:
In most commercially available predictive control packages, there is a separation between economic optimisation and predictive control, although both algorithms may be part of the same software system. This method is compared in this article with two alternative approaches where the economic objectives are directly included in the predictive control algorithm. Simulations are carried out using the Tennessee Eastman process model.
Resumo:
DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.