122 resultados para poultry offal fat
Resumo:
The effect of poultry species (broiler or turkey) and genotype (Wrolstad or BUT T8 turkeys and Ross 308 or Cobb 500 broilers) on the efficiency with which dietary longchain n-3 PUFA were incorporated into poultry meat was determined. Broilers and turkeys of both genotypes were fed one of six diets varying in FA composition (two replicates per genotype x diet interaction). Diets contained 50 g/kg added oil, which was either blended vegetable oil (control), or partially replaced with linseed oil (20 or 40 g/kg diet), fish oil (20 or 40 g/kg diet), or a mixture of the two (20 g linseed oil and 20 g fish oil/kg diet). Feeds and samples of skinless breast and thigh meat were analyzed for FA. Wrolstad dark meat was slightly more responsive than BUT T8 (P = 0.046) to increased dietary 18:3 concentrations (slopes of 0.570 and 0.465, respectively). The Ross 308 was also slightly more responsive than the Cobb 500 (P= 0.002) in this parameter (slopes of 0.557 and 0.449). There were no other significant differences between the genotypes. There was some evidence (based on the estimates of the slopes and their associated standard errors) that white turkey meat was more responsive than white chicken meat to 20:5 (slopes of 0.504 and 0.289 for turkeys and broilers, respectively). There was no relationship between dietary 18:3 n-3 content and meat 20:5 and 22:6 contents. If birds do convert 18:3 to higher FA, these acids are not then deposited in the edible tissues.
Resumo:
Aims: To estimate the proportions of farms on which broilers, turkeys and pigs were shedding fluoroquinolone (FQ)-resistant Escherichia coli or Campylobacter spp. near to slaughter. Methods and Results: Freshly voided faeces were collected on 89 poultry and 108 pig farms and cultured with media containing 1.0 mg l(-1) ciprofloxacin. Studies demonstrated the specificity of this sensitive method, and both poultry and pig sampling yielded FQ-resistant E. coli on 60% of farms. FQ-resistant Campylobacter spp. were found on around 22% of poultry and 75% of pig farms. The majority of resistant isolates of Campylobacter (89%) and E. coli (96%) tested had minimum inhibitory concentrations for ciprofloxacin of >= 8 mg l(-1). The proportion of resistant E. coli and Campylobacter organisms within samples varied widely. Conclusions: FQ resistance is commonly present among two enteric bacterial genera prevalent on pig and poultry farms, although the low proportion of resistant organisms in many cases requires a sensitive detection technique. Significance and Impact of the Study: FQ-resistant bacteria with zoonotic potential appear to be present on a high proportion of UK pig and poultry farms. The risk this poses to consumers relative to other causes of FQ-resistant human infections remains to be clarified.
Resumo:
Investigating agroforestry systems that incorporate poultry is warranted in Northern Europe as they may offer benefits including: improved welfare and use of range; reduced feed costs; price premia on products; reduced payback periods for forests; and, greater returns on investment. Free-range egg production accounts for 27% of the United Kingdom egg market and demand for outdoor broilers is increasing. No research has been conducted recently on the economic viability of agroforestry systems with poultry. An economic model was constructed to: assess economic viability of a broiler agroforestry system; and, investigate the sensitivity of economic performance to key factors and interactions, and identify those which warrant attention in research and management. The system modelled is a commercial trial established in Southern England in 2002 where deciduous trees were planted and broilers reared in six- or nine-week periods. The model uses Monte Carlo simulation and financial performance analyses run for a 120-year period. An Internal Rate of Return (IRR) of 15.5% is predicted for the six-week system which remains viable under a 'worst case' scenario (IRR of 12.6%). Factors which affect financial performance most (decreasing in magnitude) are prices achieved for broilers, costs of brooding houses, chicks, arks, feed and timber prices. The main anticipated effects of biological interactions on financial performance (increased ranging on feed conversion and excess nutrient supply on tree health) were not supported by analysis. Further research is particularly warranted on the welfare benefits offered by the tree component and its relation to price premia.
Resumo:
Long distance dispersal (LDD) plays an important role in many population processes like colonization, range expansion, and epidemics. LDD of small particles like fungal spores is often a result of turbulent wind dispersal and is best described by functions with power-law behavior in the tails ("fat tailed"). The influence of fat-tailed LDD on population genetic structure is reported in this article. In computer simulations, the population structure generated by power-law dispersal with exponents in the range of -2 to -1, in distinct contrast to that generated by exponential dispersal, has a fractal structure. As the power-law exponent becomes smaller, the distribution of individual genotypes becomes more self-similar at different scales. Common statistics like G(ST) are not well suited to summarizing differences between the population genetic structures. Instead, fractal and self-similarity statistics demonstrated differences in structure arising from fat-tailed and exponential dispersal. When dispersal is fat tailed, a log-log plot of the Simpson index against distance between subpopulations has an approximately constant gradient over a large range of spatial scales. The fractal dimension D-2 is linearly inversely related to the power-law exponent, with a slope of similar to -2. In a large simulation arena, fat-tailed LDD allows colonization of the entire space by all genotypes whereas exponentially bounded dispersal eventually confines all descendants of a single clonal lineage to a relatively small area.
Resumo:
Chemical compositions and physical properties of mixed-sex Thai indigenous (Gallus domesticus) and broiler (commercial breed, CP707) chicken biceps femoris and pectoralis muscles were determined. Indigenous chicken muscles contained higher protein contents but lower fat and ash contents compared to broiler muscles (P < 0.001). The amino acid profile of the indigenous chicken muscles was similar to that of the broiler muscles except they were slightly richer in glutamic acid (P < 0.05). The indigenous chicken muscles contained more saturated and less polyunsaturated fatty acids than the broiler muscles. There were no differences in the monounsaturated fatty acid contents between the breeds. The total collagen contents of indigenous pectoralis and biceps femoris muscles were 5.09 and 12.85 mg/g, respectively, which were higher than those found in broiler pectoralis (3.86 mg/g) and biceps femoris muscles (8.70 mg/g) (P < 0.001). Soluble collagen contents were lower for indigenous pectoralis and biceps femoris muscles, 22.16 vs. 31.38% and 26.06 vs. 33.87%, respectively. The CIE system values of lightness (L*), redness (a*), and yellowness (b*) of indigenous chicken muscles were higher than those of broiler muscles. The shear values of indigenous chicken muscles either raw or cooked were higher than those of broiler muscles (P < 0.05). After cooking, the shear values decreased for broiler biceps femoris and pectoralis muscles (P < 0.05), whereas no change was observed for indigenous chicken biceps femoris muscle (P > 0.05). Shear values increased for indigenous chicken pectoralis muscle (P < 0.05).
Resumo:
Halloumi cheese was produced from 11 bovine milks with fat contents of 1.61-4.04%, giving a range of 32-53% fat in dry matter (FDM) in the cheeses. Starter culture and/or microparticulated whey protein (Simplesse((R)) 100(E)) was also added to selected batches of milk. Hardness decreased with increasing FDM, with increase in moisture and with lower pH. On sensory evaluation, there was an increase in preference score with FDM (R-2 = 0.8). Inclusion of microparticulated whey protein may have had a fat mimetic effect, as preference scores otherwise decreased with increasing protein levels (R-2 = 0.75).
Resumo:
It has been repeatedly demonstrated that ACTH administration lowers plasma lipid concentrations in man. The present study was designed to test the hypothesis, based on observations of decreased apolipoprotein B (ApoB) synthesis and secretion in vitro, that ACTH administration inhibits the postprandial output of ApoB in man. Therefore, we studied the response to a fat-rich meal supplemented with Vitamin A in eight healthy volunteers, who underwent this test without premedication, after 4 days administration of ACTH, and after 4 days administration of a glucocorticoid (betamethasone). As expected, fasting plasma levels of low-density lipoproteins (LDL)-cholesterot (-25%) and ApoB (-17%) decreased after ACTH, but not after betamethasone administration. Also, the elevation of plasma ApoB-48 in response to fat intake (to twice the basal levels) was markedly reduced after ACTH administration. However, the postprandial rise in plasma triglycerides and retinyl palmitate was unimpaired, suggesting that ACTH administration induced the secretion of fewer but larger chylomicrons. The effect of betamethasone on the postprandial response was similar but less pronounced. This study confirms earlier reports on the lipid-lowering effects of ACTH and supports our theory, based on in vitro studies, that the lipid-lowering effects of ACTH administration in man involves an inhibition of ApoB production. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Prolonged and exaggerated postprandial plasma triacylglycerol (TAG) concentrations are considered as an independent risk factor for coronary artery disease. Western populations eat many meals at regular intervals, and can be in a postprandial state for at least 17h of a 24h period. After consuming 2 meals an early plasma TAG peak has been observed after the second meal, the origin of which is unclear. Aim of the study: To test the hypothesis that the early TAG peak observed following sequential meals was of intestinal origin and represented fat derived from the previous meal. Methods: Postprandial plasma lipaemic responses of 17 healthy postmenopausal women were studied by giving a test breakfast followed by a lunch. Watermiscible retinyl palmitate (RP) was added to the breakfast, but not the lunch test meal. Plasma TAG, retinyl esters (RE) and apo B-48 were determined for a 10h period following breakfast. Results: In response to the test meals, RE, apo B-48 and TAG showed multiple peaks. Despite omission of RP from the lunch, RE showed an early peak response after ingestion of lunch in 15 of 17 subjects. The peak response after lunch of all three markers appeared significantly earlier compared with their respective peak responses after the breakfast (P < 0.0001). The area of RE response after lunch was significantly correlated with the RE lipaemic response to the breakfast (r = 0.67; P < 0.004) and to the fasting TAG concentration (r = 0.48; P < 0.05). Conclusions: Since the lunch did not contain RP, the distinctive second influx of RE after lunch was believed to have originated from the breakfast. This, together with the fact that all three markers showed an earlier response to the lunch than the breakfast, supports the view that ingestion of a second meal provokes entry of fat from the previous meal, from an as yet unidentified site (gut, enterocytes, lymph). The results indicate that the degree of TAG "storage" from previous meals might be a function of TAG tolerance and provide a possible site of regulation of the entry of fat into the systemic circulation.
Resumo:
Controlled human intervention trials are required to confirm the hypothesis that dietary fat quality may influence insulin action. The aim was to develop a food-exchange model, suitable for use in free-living volunteers, to investigate the effects of four experimental diets distinct in fat quantity and quality: high SFA (HSFA); high MUFA (HMUFA) and two low-fat (LF) diets, one supplemented with 1.24g EPA and DHA/d (LFn-3). A theoretical food-exchange model was developed. The average quantity of exchangeable fat was calculated as the sum of fat provided by added fats (spreads and oils), milk, cheese, biscuits, cakes, buns and pastries using data from the National Diet and Nutrition Survey of UK adults. Most of the exchangeable fat was replaced by specifically designed study foods. Also critical to the model was the use of carbohydrate exchanges to ensure the diets were isoenergetic. Volunteers from eight centres across Europe completed the dietary intervention. Results indicated that compositional targets were largely achieved with significant differences in fat quantity between the high-fat diets (39.9 (SEM 0.6) and 38.9 (SEM 0.51) percentage energy (%E) from fat for the HSFA and HMUFA diets respectively) and the low-fat diets (29.6 (SEM 0.6) and 29.1 (SEM 0.5) %E from fat for the LF and LFn-3 diets respectively) and fat quality (17.5 (SEM 0.3) and 10.4 (SEM 0.2) %E front SFA and 12.7 (SEM 0.3) and 18.7 (SEM 0.4) %E MUFA for the HSFA and HMUFA diets respectively). In conclusion, a robust, flexible food-exchange model was developed and implemented successfully in the LIPGENE dietary intervention trial.
Resumo:
Background and aims: When a high fat oral load is followed several hours later by further ingestion of nutrients, there is an early postprandial peak in plasma triacylglycerol (TG). The aim of this study was to investigate the location and release of lipid from within the gastrointestinal tract. Methods: Ten healthy patients undergoing oesopho-gastro-duodenoscopy (OGD) were recruited. At t=0, all patients consumed a 50 g fat emulsion and at t=5 hours they consumed either water or a 38 g glucose solution. OGD was performed at t=6 hours and jejunal biopsy samples were evaluated for fat storage. A subgroup of five subjects then underwent a parallel metabolic study in which postprandial lipid and hormone measurements were taken during an identical two meal protocol. Results: Following oral fat at t=0, samples from patients that had subsequently ingested glucose exhibited significantly less staining for lipid within the mucosa and submucosa of the jejunum than was evident in patients that had consumed only water (p=0.028). There was also less lipid storage within the cytoplasm of enterocytes (p=0.005) following oral glucose. During the metabolic study, oral glucose consumed five hours after oral fat resulted in a postprandial peak in plasma TG, chylomicron-TG, and apolipoprotein B48 concentration compared with oral water. Conclusion: After a fat load, fat is retained within the jejunal tissue and released into plasma following glucose ingestion, resulting in a peak in chylomicron-TG which has been implicated in the pathogenesis of atherosclerosis.
Resumo:
Our objective in this study was to develop and implement an effective intervention strategy to manipulate the amount and composition of dietary fat and carbohydrate (CHO) in free-living individuals in the RISCK study. The study was a randomized, controlled dietary intervention study that was conducted in 720 participants identified as higher risk for or with metabolic syndrome. All followed a 4-wk run-in reference diet [high saturated fatty acids (SF)/high glycemic index (GI)]. Volunteers were randomized to continue this diet for a further 24 wk or to I of 4 isoenergetic prescriptions [high monounsaturated fatty acids (MUFA)/high GI; high MUFA/low GI; low fat (LF)/high GI; and LF/low GI]. We developed a food exchange model to implement each diet. Dietary records and plasma phospholipid fatty acids were used to assess the effectiveness of the intervention strategy. Reported fat intake from the LF diets was significantly reduced to 28% of energy (%E) compared with 38% E from the HM and LF diets. SF intake was successfully decreased in the HM and LF diets was similar to 10% E compared with 17% E in the reference diet (P = 0.001). Dietary MUFA in the HIM diets was similar to 17% E, significantly higher than in the reference (12% E) and LF diets (10% E) (P = 0.001). Changes in plasma phospholipid fatty acids provided further evidence for the successful manipulation of fat intake. The GI of the HGI and LGI arms differed by similar to 9 points (P = 0.001). The food exchange model provided an effective dietary strategy for the design and implementation across multiple sites of 5 experimental diets with specific targets for the proportion of fat and CHO. J. Nutr. 139: 1534-1540, 2009.
Resumo:
Cardiovascular risk is determined by the complex interactions between genetic and environmental factors. The apoE genotype represents the most-widely-studied single nucleotide polymorphism in relation to CVD risk, with >3600 publications cited in PubMed. Although originally described as a mediator of lipoprotein metabolism, the lipoprotein-independent functions of apoE are being increasingly recognised, with limited data available on the potential impact of genotype on these metabolic processes. Furthermore, although meta-analyses suggest that apoE4 carriers may have a 40-50% increased CVD risk, the associations reported in individual studies are highly heterogeneous and it is recognised that environmental factors such as smoking status and dietary fat composition influence genotype-phenotype associations. However, information is often derived from observational studies or small intervention trials in which retrospective genotyping of the cohort results in small group sizes in the rarer E2 and E4 subgroups. Either larger well-standardised intervention trials or smaller trials with prospective recruitment according to apoE genotype are needed to fully establish the impact of diet on genotype-CVD associations and to establish the potential of dietary strategies such as reduced total fat, saturated fat, or increased antioxidant intakes to counteract the increased CVD burden in apoE4 carriers.