18 resultados para population genetic structure


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parasitoids are the most important natural enemies of many insect species. Larvae of many Drosophila species can defend themselves against attack by parasitoids through a cellular immune response called encapsulation. The paper reviews recent studies of the evolutionary biology and ecological genetics of resistance in Drosophila, concentrating on D. melanogaster. The physiological basis of encapsulation, and the genes known to interfere with resistance are briefly summarized. Evidence for within- and between-population genetic variation in resistance from isofemale line, artificial selection and classical genetic studies are reviewed. There is now firm evidence that resistance is costly to Drosophila, and the nature of this cost is discussed, and the possibility that it may involve a reduction in metabolic rate considered. Comparative data on encapsulation and metabolic rates across seven Drosophila species provides support for this hypothesis. Finally, the possible population and community ecological consequences of evolution in the levels of host resistance are examined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pseudovivipary is an environmentally induced flowering abnormality in which vegetative shoots replace seminiferous (sexual) inflorescences. Pseudovivipary is usually retained in transplantation experiments, indicating that the trait is not solely induced by the growing environment. Pseudovivipary is the defining characteristic of Festuca vivipara, and arguably the only feature separating this species from its closest seminiferous relative, Festuca ovina. We performed phylogenetic and population genetic analysis on sympatric F. ovina and F. vivipara samples to establish whether pseudovivipary is an adaptive trait that accurately defines the separation of genetically distinct Festuca species. Chloroplast and nuclear marker-based analyses revealed that variation at a geographical level can exceed that between F. vivipara and F. ovina. We deduced that F. vivipara is a recent species that frequently arises independently within F. ovina populations and has not accumulated significant genetic differentiation from its progenitor. We inferred local gene flow between the species. We identified one amplified fragment length polymorphism marker that may be linked to a pseudovivipary-related region of the genome, and several other markers provide evidence of regional local adaptation in Festuca populations. We conclude that F. vivipara can only be appropriately recognized as a morphologically and ecologically distinct species; it lacks genetic differentiation from its relatives. This is the first report of a ‘failure in normal flowering development’ that repeatedly appears to be adaptive, such that the trait responsible for species recognition constantly reappears on a local basis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Where there is genetically based variation in selfishness and altruism, as in man, altruists with an innate ability to recognise and thereby only help their altruistic relatives may evolve. Here we use diploid population genetic models to chart the evolution of genetically-based discrimination in populations initially in stable equilibrium between altruism and selfishness. The initial stable equilibria occur because help is assumed subject to diminishing returns. Similar results were obtained whether we used a model with two independently inherited loci, one controlling altruism the other discrimination, or a one locus model with three alleles. The latter is the opposite extreme to the first model, and can be thought of as involving complete linkage between two loci on the same chromosome. The introduction of discrimination reduced the benefits obtained by selfish individuals, more so as the number of discriminators increased, and selfishness was eventually eliminated in some cases. In others selfishness persisted and the evolutionary outcome was a stable equilibrium involving selfish individuals and both discriminating and non-discriminating altruists. Heritable variation in selfishness, altruism and discrimination is predicted to be particularly evident among full sibs. The suggested coexistence of these three genetic dispositions could explain widespread interest within human social groups as to who will and who will not help others. These predictions merit experimental and observational investigation by primatologists, anthropologists and psychologists. Keywords: Population genetics, Diploid, Heritability, Prosocial, Behaviour genetics