23 resultados para polarization curves
Resumo:
Infrared polarization and intensity imagery provide complementary and discriminative information in image understanding and interpretation. In this paper, a novel fusion method is proposed by effectively merging the information with various combination rules. It makes use of both low-frequency and highfrequency images components from support value transform (SVT), and applies fuzzy logic in the combination process. Images (both infrared polarization and intensity images) to be fused are firstly decomposed into low-frequency component images and support value image sequences by the SVT. Then the low-frequency component images are combined using a fuzzy combination rule blending three sub-combination methods of (1) region feature maximum, (2) region feature weighting average, and (3) pixel value maximum; and the support value image sequences are merged using a fuzzy combination rule fusing two sub-combination methods of (1) pixel energy maximum and (2) region feature weighting. With the variables of two newly defined features, i.e. the low-frequency difference feature for low-frequency component images and the support-value difference feature for support value image sequences, trapezoidal membership functions are proposed and developed in tuning the fuzzy fusion process. Finally the fused image is obtained by inverse SVT operations. Experimental results of visual inspection and quantitative evaluation both indicate the superiority of the proposed method to its counterparts in image fusion of infrared polarization and intensity images.
Resumo:
The metal–insulator transition of VO2 so far has evaded an accurate description by density functional theory. The screened hybrid functional of Heyd, Scuseria and Ernzerhof leads to reasonable solutions for both the low-temperature monoclinic and high-temperature rutile phases only if spin polarization is excluded from the calculations. We explore whether a satisfactory agreement with experiment can be achieved by tuning the fraction of Hartree Fock exchange (a) in the density functional. It is found that two branches of locally stable solutions exist for the rutile phase for 12:5% 6 a 6 20%. One is metallic and has the correct stability as compared to the monoclinic phase, the other is insulating with lower energy than the metallic branch. We discuss these observations based on the V 3d orbital occupations and conclude that a ¼ 10% is the best possible choice for spin-polarized VO2 calculations.
Resumo:
We propose a topological approach to the problem of determining a curve from its iterated integrals. In particular, we prove that a family of terms in the signature series of a two dimensional closed curve with finite p-variation, 1≤p<2, are in fact moments of its winding number. This relation allows us to prove that the signature series of a class of simple non-smooth curves uniquely determine the curves. This implies that outside a Chordal SLEκ null set, where 0<κ≤4, the signature series of curves uniquely determine the curves. Our calculations also enable us to express the Fourier transform of the n-point functions of SLE curves in terms of the expected signature of SLE curves. Although the techniques used in this article are deterministic, the results provide a platform for studying SLE curves through the signatures of their sample paths.
Resumo:
We explicitly construct simple, piecewise minimizing geodesic, arbitrarily fine interpolation of simple and Jordan curves on a Riemannian manifold. In particular, a finite sequence of partition points can be specified in advance to be included in our construction. Then we present two applications of our main results: the generalized Green’s theorem and the uniqueness of signature for planar Jordan curves with finite p -variation for 1⩽p<2.
Resumo:
Let L be a number field and let E/L be an elliptic curve with complex multiplication by the ring of integers O_K of an imaginary quadratic field K. We use class field theory and results of Skorobogatov and Zarhin to compute the transcendental part of the Brauer group of the abelian surface ExE. The results for the odd order torsion also apply to the Brauer group of the K3 surface Kum(ExE). We describe explicitly the elliptic curves E/Q with complex multiplication by O_K such that the Brauer group of ExE contains a transcendental element of odd order. We show that such an element gives rise to a Brauer-Manin obstruction to weak approximation on Kum(ExE), while there is no obstruction coming from the algebraic part of the Brauer group.
Resumo:
Let C be a smooth, absolutely irreducible genus 3 curve over a number field M. Suppose that the Jacobian of C has complex multiplication by a sextic CM-field K. Suppose further that K contains no imaginary quadratic subfield. We give a bound on the primes p of M such that the stable reduction of C at p contains three irreducible components of genus 1.
Resumo:
Let E/Q be an elliptic curve and p a rational prime of good ordinary reduction. For every imaginary quadratic field K/Q satisfying the Heegner hypothesis for E we have a corresponding line in E(K)\otimes Q_p, known as a shadow line. When E/Q has analytic rank 2 and E/K has analytic rank 3, shadow lines are expected to lie in E(Q)\otimes Qp. If, in addition, p splits in K/Q, then shadow lines can be determined using the anticyclotomic p-adic height pairing. We develop an algorithm to compute anticyclotomic p-adic heights which we then use to provide an algorithm to compute shadow lines. We conclude by illustrating these algorithms in a collection of examples.