131 resultados para phosphorus adsorption isotherms
Resumo:
Silicon release from rice straw and amorphous silica when shaken in solution with five Sri Lankan soils was studied indirectly using sorption isotherms and changes in concentration and directly using straw in dialysis bags examined using electron microscopy. The aim was to further our understanding of the processes and factors affecting the release of straw-Si in soils and its availability to rice. The soils (alfisols and ultisols) shaken with 0.1 M NaCl (5 g per 125 mL for 250 days) produced concentrations of 1 - 4 mg L-1 of monosilicic acid-Si. Amorphous silica added to these suspensions (36.5 mg, containing 17 mg Si) raised the concentrations to 20 - 40 mg L-1, and added rice straw (0.5 g, containing 17 mg Si) gave 10 - 25 mg L-1. Sorption isotherms (7 days equilibrations) were used to calculate from the concentrations the amounts of Si released ( 24 - 38% and 8 - 21%, respectively). Both materials gave about 40 mg L-1 of monosilicic acid-Si plus 30 mg L-1 of disilicic acid-Si when shaken in solution alone (5 g per 125 mL). Straw in dialysis bags ( 0.5 g per 25 mL in 0.1 M NaCl) was shaken in soil suspension ( 5 g per 100 mL) for 60 days. Similar concentrations and releases were measured to those obtained above. About one fifth of the mass of straw was lost by decomposition in the first 15 days. A chloroform treatment prevented decomposition, but Si release was unaffected. Disintegration continued throughout the experiments, with phytoliths being exposed and dissolved. Compared to the rate of release from straw into solution without soil, the release of Si into soil suspensions was increased during the first 20 days by adsorption on the soil, but was then reduced probably through the effect of Fe and Al on the phytolith surfaces. The extent of this blocking effect varied between soils and was not simply related to soil pH.
Resumo:
The combined use of organic residue and inorganic fertiliser-phosphorus (P) is appropriate in meeting both the short and long-term P requirement of crops. To assess the influence of added inorganic fertiliser-P on the processes of decomposition and P release from the residue and the relationships with quality, prunings of Gliricidia sepium, Leucaena leucocephela, Senna siamea, Acacia mangium and Paraserienthus falcataria were incubated without and with added inorganic fertiliser-P for 56 days. Soil was added only as inoculum. Decomposition rate and amounts of acid extractable-P (P release) were in the same order: G. sepium > S. siamea > L. leucocepheta > P falcataria > A. mangium. Unlike the other residues, A. mangium released no P despite the loss of half its mass during the 8 weeks of incubation. The residue P content correlated with P release. However, decomposition rate did not correlate with residue P content but with the lignin, polyphenol and cellulose content, and ratios to P. These ratios were negatively correlated with P release suggesting that lignin and polyphenol contents influence P release more when the residue-P content is low. Results suggest that rate of decomposition influences the release of P. The critical residue P content for P release was estimated to be 0.12% < P < 0.19%. Added P had no effect on decomposition and P release from the residues.
Resumo:
A dual isotopic technique was used to assess the effects of soil type, and residues of Gliricidia sepium, without and with added fertiliser-P on the utilisation of P. Upland rice (Oryza sativa) was grown for 70 days in two tropical acid soils of different P sorbing capacity and P status. Uniformly P-32-labelled soils were treated with inorganic fertiliser-P tagged with P-33, Gliricidia sepium residue applied at planting and 3 weeks earlier, and in a combination of fertiliser-P and Gliricidia applied at and 3 weeks before planting. There were significant responses of shoot and root weights, and total P uptake to Gliricidia- and/or fertiliser-P addition in the Ultisol (low P status) but not the Oxisol (high P status), suggesting that P in the latter soil was not yield limiting, despite the high standard P requirement. Similarly, incorporation of Gliricidia three weeks before planting further increased shoot weight only in the Ultisol. There were generally higher proportions, quantities and percent utilisations of the Gliricidia- P and fertiliser-P in the Ultisol than in the Oxisol. Gliricidia significantly increased the utilisation of fertiliser-P only in the Ultisol. However, early application of Gliricidia increased Gliricidia- P but not fertiliser-P utilisation in the Ultisol. Added fertiliser-P did not influence Gliricidia- P utilisation.
Resumo:
1. We compared the baseline phosphorus (P) concentrations inferred by diatom-P transfer functions and export coefficient models at 62 lakes in Great Britain to assess whether the techniques produce similar estimates of historical nutrient status. 2. There was a strong linear relationship between the two sets of values over the whole total P (TP) gradient (2-200 mu g TP L-1). However, a systematic bias was observed with the diatom model producing the higher values in 46 lakes (of which values differed by more than 10 mu g TP L-1 in 21). The export coefficient model gave the higher values in 10 lakes (of which the values differed by more than 10 mu g TP L-1 in only 4). 3. The difference between baseline and present-day TP concentrations was calculated to compare the extent of eutrophication inferred by the two sets of model output. There was generally poor agreement between the amounts of change estimated by the two approaches. The discrepancy in both the baseline values and the degree of change inferred by the models was greatest in the shallow and more productive sites. 4. Both approaches were applied to two lakes in the English Lake District where long-term P data exist, to assess how well the models track measured P concentrations since approximately 1850. There was good agreement between the pre-enrichment TP concentrations generated by the models. The diatom model paralleled the steeper rise in maximum soluble reactive P (SRP) more closely than the gradual increase in annual mean TP in both lakes. The export coefficient model produced a closer fit to observed annual mean TP concentrations for both sites, tracking the changes in total external nutrient loading. 5. A combined approach is recommended, with the diatom model employed to reflect the nature and timing of the in-lake response to changes in nutrient loading, and the export coefficient model used to establish the origins and extent of changes in the external load and to assess potential reduction in loading under different management scenarios. 6. However, caution must be exercised when applying these models to shallow lakes where the export coefficient model TP estimate will not include internal P loading from lake sediments and where the diatom TP inferences may over-estimate TP concentrations because of the high abundance of benthic taxa, many of which are poor indicators of trophic state.
Resumo:
In order to gain understanding of the movement of pollutant metals in soil. the chemical mechanisms involved in the transport of zinc were studied. The displacement of zinc through mixtures of sand and cation exchange resin was measured to validate the methods used for soil. With cation exchange capacities of 2.5 and 5.0 cmol(c) kg(-1). 5.6 and 8.4 pore volumes of 10 mM CaCl2, respectively, were required to displace a pulse of ZnCl2. A simple Burns-type model (Wineglass) using an adsorption coefficient (K-d) determined by fitting a straight line relationship to an adsorption isotherm gave a good fit to the data (K-d=0.73 and 1.29 ml g(-1), respectively). Surface and subsurface samples of an acidic sandy loam (organic matter 4.7 and 1.0%. cation exchange capacity (CEC) 11.8 and 6.1 cmol(c) kg(-1) respectively) were leached with 10 mM calcium chloride. nitrate and perchlorate. With chloride. the zinc pulse was displaced after 25 and 5 pore volumes, respectively. The Kd values were 6.1 and 2.0 ml g(-1). but are based on linear relationships fitted to isotherms which are both curved and show hysteresis. Thus. a simple model has limited value although it does give a general indication of rate of displacement. Leaching with chloride and perchlorate gave similar displacement and Kd values, but slower movement occurred with nitrate in both soil samples (35 and 7 pore volumes, respectively) which reflected higher Kd values when the isotherms were measured using this anion (7.7 and 2.8 ml g(-1) respectively). Although pH values were a little hi-her with nitrate in the leachates, the differences were insufficient to suggest that this increased the CEC enough to cause the delay. No increases in pH occurred with nitrate in the isotherm experiments. Geochem was used to calculate the proportions of Zn complexed with the three anions and with fulvic acid determined from measurements of dissolved organic matter. In all cases, more than 91% of the Zn was present as Zn2+ and there were only minor differences between the anions. Thus, there is an unexplained factor associated with the greater adsorption of Zn in the presence of nitrate. Because as little as five pore volumes of solution displaced Zn through the subsurface soil, contamination of ground waters may be a hazard where Zn is entering a light-textured soil, particularly where soil salinity is increased. Reductions in organic matter content due to cultivation will increase the hazard. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Effective use and recycling of manures together with occasional and judicious use of supplementary fertilizing materials forms the basis for management of phosphorus (P) and potassium (K) within organic farming systems. Replicated field trials were established at three sites across the UK to compare the supply of P and K to grass-clover swards cut for silage from a range of fertilizing materials, and to assess the usefulness of routine soil tests for P and K in organic farming systems. None of the fertilizing materials (farmyard manure, rock phosphate, Kali vinasse, volcanic tuff) significantly increased silage yields, nor was P offtake increased. However, farmyard manure and Kali vinasse proved effective sources of K to grass and clover in the short to medium term. Available P (measured as Olsen-P) showed no clear relationship with crop P offtake in these trials. In contrast, available K (measured by ammonium nitrate extraction) proved a useful measurement to predict K availability to crops and support K management decisions.
Resumo:
The Phosphorus Indicators Tool provides a catchment-scale estimation of diffuse phosphorus (P) loss from agricultural land to surface waters using the most appropriate indicators of P loss. The Tool provides a framework that may be applied across the UK to estimate P loss, which is sensitive not only to land use and management but also to environmental factors such as climate, soil type and topography. The model complexity incorporated in the P Indicators Tool has been adapted to the level of detail in the available data and the need to reflect the impact of changes in agriculture. Currently, the Tool runs on an annual timestep and at a 1 km(2) grid scale. We demonstrate that the P Indicators Tool works in principle and that its modular structure provides a means of accounting for P loss from one layer to the next, and ultimately to receiving waters. Trial runs of the Tool suggest that modelled P delivery to water approximates measured water quality records. The transparency of the structure of the P Indicators Tool means that identification of poorly performing coefficients is possible, and further refinements of the Tool can be made to ensure it is better calibrated and subsequently validated against empirical data, as it becomes available.
Resumo:
The effect of zinc-phosphorus (Zn-P) interaction on Zn efficiency of six wheat cultivars was studied. The higher dry matter yields were observed when Zn was applied at 5 mu g g(-1) soil than with no Zn application. Phosphorus applications also increased dry matter yield up to the application of 25 mu g P g(-1) soil. The dry matter yield was significantly lower at the P rate of 250 mu g g(-1) soil. At the Zn-deficient level, the Zn-efficient cultivars had higher Zn concentrations in the shoots. Zinc concentrations in all cultivars increased when the P level in the soil was increased from 0 to 25 mu g P g(-1) soil except for the cv. Durati, in which Zn concentrations decreased with increases in P levels. However, when ZnxP interactions were investigated, it was observed that at a Zn-deficient level, Zn concentrations in the plant shoot decreased with each higher level of P, and more severe Zn deficiency was observed at P level of 250 mu g g(-1) soil.
Resumo:
Models developed to identify the rates and origins of nutrient export from land to stream require an accurate assessment of the nutrient load present in the water body in order to calibrate model parameters and structure. These data are rarely available at a representative scale and in an appropriate chemical form except in research catchments. Observational errors associated with nutrient load estimates based on these data lead to a high degree of uncertainty in modelling and nutrient budgeting studies. Here, daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) have been used to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling. The daily records were artificially decimated to create 7 stratified sampling records, 7 weekly records, and 30 monthly records from each WY and catchment. These were used to evaluate the impact of sampling frequency on load estimate uncertainty. The analysis underlines the high uncertainty of load estimates based on monthly data and individual P fractions rather than total P. Catchments with a high baseflow index and/or low population density were found to return a lower RMSE on load estimates when sampled infrequently than those with a tow baseflow index and high population density. Catchment size was not shown to be important, though a limitation of this study is that daily records may fail to capture the full range of P export behaviour in smaller catchments with flashy hydrographs, leading to an underestimate of uncertainty in Load estimates for such catchments. Further analysis of sub-daily records is needed to investigate this fully. Here, recommendations are given on load estimation methodologies for different catchment types sampled at different frequencies, and the ways in which this analysis can be used to identify observational error and uncertainty for model calibration and nutrient budgeting studies. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Long-term indicators of soil fertility were assessed by measuring grain yield, soil organic carbon (SOC) and soil Olsen phosphorous for a P-deficient soil. In one set of treatments, goat manure was applied annually for 13 years at 0, 5 and 10 t ha(-1), and intercrops of sorghum/cowpea, millet/green gram and maize/pigeonpea were grown. Yield depended on rainfall and trends with time were not identifiable. Manure caused an upward trend in SOC, but 10 t ha(-1) manure did not give significantly more SOC than 5 t ha(-1). Only 10 t ha(-1) manure increased Olsen P. Measurements of both SOC and Olsen P are recommended. In another set of treatments, manure was applied for four years; the residual effect lasted another seven to eight years when assessed by yield, SOC and Olsen P Treatment with mineral fertilizers provided the same rates of N and P as 5 t hat manure and yields from manure and fertilizer were similar. Fertilizer increased Olsen P but not SOC. Management systems with occasional manure application and intermediate fertilizer applications should be assessed. Inputs and offtakes of C, N and P were measured for three years. Approximately 16, 25 and 11% of C, N and P respectively were stabilized into soil organic matter from 5 t ha(-1) a(-1) manure. The majority of organic P was fixed as soil inorganic P.
Phosphorus dynamics and export in streams draining micro-catchments: Development of empirical models
Resumo:
Annual total phosphorus (TP) export data from 108 European micro-catchments were analyzed against descriptive catchment data on climate (runoff), soil types, catchment size, and land use. The best possible empirical model developed included runoff, proportion of agricultural land and catchment size as explanatory variables but with a low explanation of the variance in the dataset (R-2 = 0.37). Improved country specific empirical models could be developed in some cases. The best example was from Norway where an analysis of TP-export data from 12 predominantly agricultural micro-catchments revealed a relationship explaining 96% of the variance in TP-export. The explanatory variables were in this case soil-P status (P-AL), proportion of organic soil, and the export of suspended sediment. Another example is from Denmark where an empirical model was established for the basic annual average TP-export from 24 catchments with percentage sandy soils, percentage organic soils, runoff, and application of phosphorus in fertilizer and animal manure as explanatory variables (R-2 = 0.97).
Resumo:
Intensive cultivation of fen peat soils (Eutric Histosols) for agricultural purposes, started in Europe about 250 years ago, resulting in decreased soil fertility, increased oxidation of peat and corresponding CO2-emissions to the atmosphere, nutrient transfer to aquatic ecosystems and losses in the total area of the former native wetlands. To prevent these negative environmental effects set-aside programs and rewetting measures were promoted in recent years. Literature results and practical experiences showed that large scale rewetting of intensively used agricultural Histosols may result in the mobilisation of phosphorus (P), its transport to adjacent surface waters and an accelerated eutrophication risk. The paper summarises results from an international European Community sponsored research project and demonstrates how results obtained at different scales and from different scientific disciplines were compiled to derive a strategy to carry out rewetting measures. A decision support system (DSS) for a hydrologically sensitive area in the Droemling catchment in north-eastern Germany was developed and is presented as a tool to regulate rewetting in order to control P release. It is demonstrated that additional laboratory experiments to identify essential processes of P release during rewetting and the site-specific management of the water table, the involvement of specific knowledge and experience of the stakeholders are necessary to develop an applicable DSS. The presented DSS is practically used to prevent freshwater resources from diffuse P pollution.
Resumo:
The restoration of wetlands as bird habitats often involves the maintenance of a fluctuating water regime by careful, localised ditch water management using pumps and sluices. However, there is evidence in the literature to Suggest that alternate flood/drainage cycles can accelerate nutrient cycling and transport within the soil and, therefore, pose a threat to water quality through the process of eutrophication. This study focused on the dynamics and losses of soil P in a recently re-wetted, eutrophic fen peat developed on alluvium ill South west England. During the 2-year Study (2001 and 2002), soil water tensiometry revealed that the field water table (fluctuating annually between +20 and 60 cm relative to ground level) was extensively influenced across most of the 8.4 ha field site by the management of the adjacent ditch water levels. This conservation-led, prescribed water balance was facilitated by the high hydraulic conductivity (1.1 x 10(-s) ms(-1)) of the lower (70-140 cm), degraded layer of peat. However, only during a 7-day period of water table drawdown by intermittent pump drainage, approximately 45 g ha(-1) of dissolved reactive P (DRP) entered the pumped ditch from the field via this degraded layer. Summer rainfall events >35 mm d(-1) also coincided with significant peaks ill ditch water P concentration (up to 200 mu g L-1 DRP). Even larger peaks (Up to 700 mu g L-1 DRP) Occurred With the annual onset of autumn reflooding. These episodic P loss events pose a serious potential threat to biological water quality. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sorghum (Sorghum bicolor L.) plants were grown in split pots in three Rothamsted soils with different soil pH values and phosphorus (P) contents. Ammonium addition resulted in higher plant dry weight and P content than comparable nitrate treatments. The pH of soils in the rhizosphere (0.51-mm average thickness) differed from the bulk soil depending on nitrogen (N) form and level. Ammonium application resulted in a pH decrease, but nitrate application slightly increased pH. To examine the effect of rhizosphere acidification on mobilization of phosphate, 0.5 M NaHCO3 extractable phosphate was measured. The lowering rhizosphere pH enhanced the solubility of P in the soil and maybe availability of P to plants. Rhizosphere-P depletion increased with increasing ammonium supply, but when N was supplied as nitrate, P depletion was not related to increasing nitrate supply. Low P status Hoosfield soils developed mycorrhizal infection., and as a result, P inflow was increased. Geescroft soil, which initially had a high P status, did not develop mycorrhizal infection, and P inflow was much smaller and was unaffected by N treatments. Therefore, plant growth and P uptake were influenced by both rhizosphere pH and indigenous mycorrhizal infection.