75 resultados para personal assets
Resumo:
Fingerprinting is a well known approach for identifying multimedia data without having the original data present but what amounts to its essence or ”DNA”. Current approaches show insufficient deployment of three types of knowledge that could be brought to bear in providing a finger printing framework that remains effective, efficient and can accommodate both the whole as well as elemental protection at appropriate levels of abstraction to suit various Foci of Interest (FoI) in an image or cross media artefact. Thus our proposed framework aims to deliver selective composite fingerprinting that remains responsive to the requirements for protection of whole or parts of an image which may be of particularly interest and be especially vulnerable to attempts at rights violation. This is powerfully aided by leveraging both multi-modal information as well as a rich spectrum of collateral context knowledge including both image-level collaterals as well as the inevitably needed market intelligence knowledge such as customers’ social networks interests profiling which we can deploy as a crucial component of our Fingerprinting Collateral Knowledge. This is used in selecting the special FoIs within an image or other media content that have to be selectively and collaterally protected.
Resumo:
Fingerprinting is a well known approach for identifying multimedia data without having the original data present but instead what amounts to its essence or 'DNA'. Current approaches show insufficient deployment of various types of knowledge that could be brought to bear in providing a fingerprinting framework that remains effective, efficient and can accommodate both the whole as well as elemental protection at appropriate levels of abstraction to suit various Zones of Interest (ZoI) in an image or cross media artefact. The proposed framework aims to deliver selective composite fingerprinting that is powerfully aided by leveraging both multi-modal information as well as a rich spectrum of collateral context knowledge including both image-level collaterals and also the inevitably needed market intelligence knowledge such as customers' social networks interests profiling which we can deploy as a crucial component of our fingerprinting collateral knowledge.
Resumo:
There are a number of challenges associated with managing knowledge and information in construction organizations delivering major capital assets. These include the ever-increasing volumes of information, losing people because of retirement or competitors, the continuously changing nature of information, lack of methods on eliciting useful knowledge, development of new information technologies and changes in management and innovation practices. Existing tools and methodologies for valuing intangible assets in fields such as engineering, project management and financial, accounting, do not address fully the issues associated with the valuation of information and knowledge. Information is rarely recorded in a way that a document can be valued, when either produced or subsequently retrieved and re-used. In addition there is a wealth of tacit personal knowledge which, if codified into documentary information, may prove to be very valuable to operators of the finished asset or future designers. This paper addresses the problem of information overload and identifies the differences between data, information and knowledge. An exploratory study was conducted with a leading construction consultant examining three perspectives (business, project management and document management) by structured interviews and specifically how to value information in practical terms. Major challenges in information management are identified. An through-life Information Evaluation methodology (IEM) is presented to reduce information overload and to make the information more valuable in the future.
Resumo:
Much prior research on the structure and performance of UK real estate portfolios has relied on aggregated measures for sector and region. For these groupings to have validity, the performance of individual properties within each group should be similar. This paper analyses a sample of 1,200 properties using multiple discriminant analysis and cluster analysis techniques. It is shown that conventional property type and spatial classifications do not capture the variation in return behaviour at the individual building level. The major feature is heterogeneity - but there may be distinctions between growth and income properties and between single and multi-let properties that could help refine portfolio structures.