18 resultados para performance measurements
Resumo:
Urban land surface models (LSM) are commonly evaluated for short periods (a few weeks to months) because of limited observational data. This makes it difficult to distinguish the impact of initial conditions on model performance or to consider the response of a model to a range of possible atmospheric conditions. Drawing on results from the first urban LSM comparison, these two issues are considered. Assessment shows that the initial soil moisture has a substantial impact on the performance. Models initialised with soils that are too dry are not able to adjust their surface sensible and latent heat fluxes to realistic values until there is sufficient rainfall. Models initialised with too wet soils are not able to restrict their evaporation appropriately for periods in excess of a year. This has implications for short term evaluation studies and implies the need for soil moisture measurements to improve data assimilation and model initialisation. In contrast, initial conditions influencing the thermal storage have a much shorter adjustment timescale compared to soil moisture. Most models partition too much of the radiative energy at the surface into the sensible heat flux at the probable expense of the net storage heat flux.
Resumo:
Although it is well known that water is essential for human homeostasis and survival, only recently have we begun to understand its role in the maintenance of brain function. Herein, we integrate emerging evidence regarding the effects of both dehydration and additional acute water consumption on cognition and mood. Current findings in the field suggest that particular cognitive abilities and mood states are positively influenced by water consumption. The impact of dehydration on cognition and mood is particularly relevant for those with poor fluid regulation, such as the elderly and children. We critically review the most recent advances in both behavioural and neuroimaging studies of dehydration and link the findings to the known effects of water on hormonal, neurochemical and vascular functions in an attempt to suggest plausible mechanisms of action. We identify some methodological weaknesses, including inconsistent measurements in cognitive assessment and the lack of objective hydration state measurements as well as gaps in knowledge concerning mediating factors that may influence water intervention effects. Finally, we discuss how future research can best elucidate the role of water in the optimal maintenance of brain health and function.
Resumo:
A great number of studies on wind conditions in passages between slab-type buildings have been conducted in the past. However, wind conditions under different structure and configuration of buildings is still unclear and studies existed still can’t provide guidance on urban planning and design, due to the complexity of buildings and aerodynamics. The aim of this paper is to provide more insight in the mechanism of wind conditions in passages. In this paper, a simplified passage model with non-parallel buildings is developed on the basis of the wind tunnel experiments conducted by Blocken et al. (2008). Numerical simulation based on CFD is employed for a detailed investigation of the wind environment in passages between two long narrow buildings with different directions and model validation is performed by comparing numerical results with corresponding wind tunnel measurements.