17 resultados para path analysis
Resumo:
Incoherent scatter data from non-thermal F-region ionospheric plasma are analysed, using theoretical spectra predicted by Raman et al. It is found that values of the semi-empirical drift parameter D∗, associated with deviations of the ion velocity distribution from a Maxwellian, and the plasma temperatures can be rigorously deduced (the results being independent of the path of iteration) if the angle between the line-of-sight and the geomagnetic field is larger than about 15–20 degrees. For small aspect angles, the deduced value of the average (or 3-D) ion temperature remains ambiguous and the analysis is restricted to the determination of the line-of-sight temperature because the theoretical spectrum is insensitive to non-thermal effects when the plasma is viewed along directions almost parallel to the magnetic field. This limitation is expected to apply to any realistic model of the ion velocity distribution, and its consequences are discussed. Fit strategies which allow for mixed ion composition are also considered. Examples of fits to data from various EISCAT observing programmes are presented.
Resumo:
The Bloom filter is a space efficient randomized data structure for representing a set and supporting membership queries. Bloom filters intrinsically allow false positives. However, the space savings they offer outweigh the disadvantage if the false positive rates are kept sufficiently low. Inspired by the recent application of the Bloom filter in a novel multicast forwarding fabric, this paper proposes a variant of the Bloom filter, the optihash. The optihash introduces an optimization for the false positive rate at the stage of Bloom filter formation using the same amount of space at the cost of slightly more processing than the classic Bloom filter. Often Bloom filters are used in situations where a fixed amount of space is a primary constraint. We present the optihash as a good alternative to Bloom filters since the amount of space is the same and the improvements in false positives can justify the additional processing. Specifically, we show via simulations and numerical analysis that using the optihash the false positives occurrences can be reduced and controlled at a cost of small additional processing. The simulations are carried out for in-packet forwarding. In this framework, the Bloom filter is used as a compact link/route identifier and it is placed in the packet header to encode the route. At each node, the Bloom filter is queried for membership in order to make forwarding decisions. A false positive in the forwarding decision is translated into packets forwarded along an unintended outgoing link. By using the optihash, false positives can be reduced. The optimization processing is carried out in an entity termed the Topology Manger which is part of the control plane of the multicast forwarding fabric. This processing is only carried out on a per-session basis, not for every packet. The aim of this paper is to present the optihash and evaluate its false positive performances via simulations in order to measure the influence of different parameters on the false positive rate. The false positive rate for the optihash is then compared with the false positive probability of the classic Bloom filter.