18 resultados para parasite antigen
Resumo:
We present a new concept for rapid and fully portable Prostate Specific Antigen (PSA) measurement, termed “Lab-in-a-Briefcase”, which integrates an affordable microfluidic ELISA platform utilising a melt-extruded fluoropolymer Micro Capillary Film (MCF) containing 10 bore, 200 μm internal diameter capillaries, a disposable multi-syringe aspirator (MSA) plus a sample tray pre-loaded with all required immunoassay reagents, and a portable film scanner for colorimetric signal digital quantitation. Each MSA can perform 10 replicate microfluidic immunoassays on 8 samples, allowing 80measurements to be made in less than 15 minutes based on semi-automated operation and norequirement of additional fluid handling equipment. An assay was optimised for measurement of a clinically relevant range of PSA from 0.9 to 60.0 ng/ml in 15 minutes with CVs in the order of 5% based on intra-assay variability when read using a consumer flatbed film scanner. The PSA assay performance in the MSA remained robust in the presence of undiluted or 1:2 diluted human serum or whole blood, and the matrix effect could simply be overcome by extending sample incubation times. The PSA "Lab-in-a-briefcase" is particularly suited to a low-resource health setting where diagnostic labs and automated immunoassay systems are not accessible, by allowing PSA measurement outside the laboratory using affordable equipment.
Resumo:
We present a new, power-free and flexible detection system named MCFphone for portable colorimetric and fluorescence quantitative sandwich immunoassay detection of prostate specific antigen (PSA). The MCFphone is composed by a smartphone integrated with a magnifying lens, a simple light source and a miniaturised immunoassay platform, the Microcapillary Film (MCF). The excellent transparency and flat geometry of fluoropolymer MCF allowed quantitation of PSA in the range 0.9 to 60 ng/ml with < 7 % precision in 13 minutes using enzymatic amplification and a chromogenic substrate. The lower limit of detection was further improved from 0.4 to 0.08 ng/ml in whole blood samples with the use of a fluorescence substrate. The MCFphone has shown capable of performing rapid (13 to 22 minutes total assay time) colorimetric quantitative and highly sensitive fluorescence tests with good %Recovery, which represents a major step in the integration of a new generation of inexpensive and portable microfluidic devices with commercial immunoassay reagents and off-the-shelf smartphone technology.
Resumo:
Therapeutic activation of Toll-like receptors (TLR) has potential for cancer immunotherapy, for augmenting the activity of anti-tumor monoclonal antibodies (mAbs), and for improved vaccine adjuvants. A previous attempt to specifically target TLR agonists to dendritic cells (DC) using mAbs failed because conjugation led to non-specific binding and mAbs lost specificity. We demonstrate here for the first time the successful conjugation of a small molecule TLR7 agonist to an anti-tumour mAb (the anti-hCD 20 rituximab) without compromising antigen specificity. The TLR7 agonist UC-1V150 was conjugated to rituximab using two conjugation methods and yield, molecular substitution ratio, retention of TLR7 activity and specificity of antigen binding were compared. Both conjugation methods produced rituximab-UC-1V150 conjugates with UC-1V150 : rituximab ratio ranging from 1:1 to 3:1 with drug loading quantified by UV spectroscopy and drug substitution ratio verified by MALDI TOF mass spectroscopy. The yield of purified conjugates varied with conjugation method, and dropped as low as 31% using a method previously described for conjugating UC-1V150 to proteins, where a bifunctional crosslinker was firstly reacted with rituximab, and secondly to the TLR7 agonist. We therefore developed a direct conjugation method by producing an amine-reactive UV active version of UC-1V150, termed NHS:UC-1V150. Direct conjugation with NHS:UC-1V150 was quick and simple and gave improved conjugate yields of 65-78%. Rituximab-UC-1V150 conjugates had the expected pro-inflammatory activity in vitro (EC50 28-53 nM) with a significantly increased activity over unconjugated UC-1V150 (EC50 547 nM). Antigen binding and specificity of the rituxuimab-UC-1V150 conjugates was retained, and after incubation with human peripheral blood leukocytes, all conjugates bound strongly only to CD20-expressing B cells whilst no non-specific binding to CD20-negative cells was observed. Selective targeting of Toll-like receptor activation directly within tumors or to DC is now feasible.