37 resultados para ordered-disordered


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different ways of performing low-energy electron diffraction (LEED) structure determinations for the p(2 x 2) structure of oxygen on Ni {111} are compared: a conventional LEED-IV structure analysis using integer and fractional-order IV-curves collected at normal incidence and an analysis using only integer-order IV-curves collected at three different angles of incidence. A clear discrimination between different adsorption sites can be achieved by the latter approach as well as the first and the best fit structures of both analyses are within each other's error bars (all less than 0.1 angstrom). The conventional analysis is more sensitive to the adsorbate coordinates and lateral parameters of the substrate atoms whereas the integer-order-based analysis is more sensitive to the vertical coordinates of substrate atoms. Adsorbate-related contributions to the intensities of integer-order diffraction spots are independent of the state of long-range order in the adsorbate layer. These results show, therefore, that for lattice-gas disordered adsorbate layers, for which only integer-order spots are observed, similar accuracy and reliability can be achieved as for ordered adsorbate layers, provided the data set is large enough.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel approach to calculating Low-Energy Electron Diffraction (LEED) intensities for ordered molecular adsorbates. First, the intra-molecular multiple scattering is computed to obtain a non-diagonal molecular T-matrix. This is then used to represent the entire molecule as a single scattering object in a conventional LEED calculation, where the Layer Doubling technique is applied to assemble the different layers, including the molecular ones. A detailed comparison with conventional layer-type LEED calculations is provided to ascertain the accuracy of this scheme of calculation. Advantages of this scheme for problems involving ordered arrays of molecules adsorbed on surfaces are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polystyrene-block-poly(ferrocenylethylmethylsilane) diblock copolymer, displaying a double-gyroid morphology when self-assembled in the solid state, has been prepared with a PFEMS volume fraction phi(PFMS)=0.39 and a total molecular weight of 64 000 Da by sequential living anionic polymerisation. A block copolymer with a metal-containing block with iron and silicon in the main chain was selected due to its plasma etch resistance compared to the organic block. Self-assembly of the diblock copolymer in the bulk showed a stable, double-gyroid morphology as characterised by TEM. SAXS confirmed that the structure belonged to the Ia3d space group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present helium scattering measurements of a water ad-layer grown on a O(2 1)/Ru(0001) surface. The adsorbed water layer results in a well ordered helium diffraction pattern with systematic extinctions of diffraction spots due to glide line symmetries. The data reflects a well-defined surface structure that maintains proton order even at surprisingly high temperatures of 140 K. The diffraction data we measure is consistent with a structure recently derived from STM measurements performed at 6 K. Comparison with recent DFT calculation is in partial agreement, suggesting that these calculations might be underestimating the contribution of relative water molecule orientations to the binding energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase behavior of grafted d-polystyrene-block-poly(methyl methacrylate) diblock copolymer films is examined, with particular focus on the effect of solvent and annealing time. It was observed that the films undergo a two-step transformation from an initially disordered state, through an ordered metastable state, to the final equilibrium configuration. It was also found that altering the solvent used to wash the films, or complete removal of the solvent prior to thermal annealing using supercritical CO2, could influence the structure of the films in the metastable state, though the final equilibrium state was unaffected. To aid in the understanding to these experimental results, a series of self-consistent field theory calculations were done on a model diblock copolymer brush containing solvent. Of the different models examined, those which contained a solvent selective for the grafted polymer block most accurately matched the observed experimental behavior. We hypothesize that the structure of the films in the metastable state results from solvent enrichment of the film near the film/substrate interface in the case of films washed with solvent or faster relaxation of the nongrafted block for supercritical CO2 treated (solvent free) films. The persistence of the metastable structures was attributed to the slow reorganization of the polymer chains in the absence of solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organization of non-crystalline polymeric materials at a local level, namely on a spatial scale between a few and 100 a, is still unclear in many respects. The determination of the local structure in terms of the configuration and conformation of the polymer chain and of the packing characteristics of the chain in the bulk material represents a challenging problem. Data from wide-angle diffraction experiments are very difficult to interpret due to the very large amount of information that they carry, that is the large number of correlations present in the diffraction patterns.We describe new approaches that permit a detailed analysis of the complex neutron diffraction patterns characterizing polymer melts and glasses. The coupling of different computer modelling strategies with neutron scattering data over a wide Q range allows the extraction of detailed quantitative information on the structural arrangements of the materials of interest. Proceeding from modelling routes as diverse as force field calculations, single-chain modelling and reverse Monte Carlo, we show the successes and pitfalls of each approach in describing model systems, which illustrate the need to attack the data analysis problem simultaneously from several fronts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new approach that allows the determination and refinement of force field parameters for the description of disordered macromolecular systems from experimental neutron diffraction data obtained over a large Q range. The procedure is based on tight coupling between experimentally derived structure factors and computer modelling. By separating the potential into terms representing respectively bond stretching, angle bending and torsional rotation and by treating each of them separately, the various potential parameters are extracted directly from experiment. The procedure is illustrated on molten polytetrafluoroethylene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new approach that allows the determination of force-field parameters for the description of disordered macromolecular systems from experimental neutron diffraction data obtained over a large Q range. The procedure is based on a tight coupling between experimentally derived structure factors and computer modelling. We separate the molecular potential into non-interacting terms representing respectively bond stretching, angle bending and torsional rotation. The parameters for each of the potentials are extracted directly from experimental data through comparison of the experimental structure factor and those derived from atomistic level molecular models. The viability of these force fields is assessed by comparison of predicted large-scale features such as the characteristic ratio. The procedure is illustrated on molten poly(ethylene) and poly(tetrafluoroethylene).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct electrochemical templating is carried out using a thin layer of a self-assembled diamond phase (QIID) of phytantriol to create a platinum film with a novel nanostructure. Small-angle X-ray scattering shows that the nanostructured platinum films are asymmetrically templated and exhibit “single diamond” morphology with Fd3m symmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystals of four erbium-chromium sulfides have been grown by chemical vapor transport using iodine as the transporting agent. Single-crystal X-ray diffraction reveals that in Er(3)CrS(6) octahedral sites are occupied exclusively by Cr(3+) cations, leading to one-dimensional CrS(4)(5-) chains of edge-sharing octahedra, while in Er(2)CrS(4), Er(3+), and Cr(2+) cations occupy the available octahedral sites in an ordered manner. By contrast, in Er(6)Cr(2)S(11) and Er(4)CrS(7), Er(3+) and Cr(2+) ions are disordered over the octahedral sites. In Er(2)CrS(4), Er(6)Cr(2)S(11), and Er(4)CrS(7), the network of octahedra generates an anionic framework constructed from M(2)S(5) slabs of varying thickness, linked by one-dimensional octahedral chains. This suggests that these three phases belong to a series in which the anionic framework may be described by the general formula [M(2n+1)S(4n+3)](x-), with charge balancing provided by Er(3+) cations located in sites of high-coordination number within one-dimensional channels defined by the framework. Er(4)CrS(7), Er(6)Cr(2)S(11), and Er(2)CrS(4) may thus be considered as the n = 1, 2, and infinity members of this series. While Er(4)CrS(7) is paramagnetic, successive magnetic transitions associated with ordering of the chromium and erbium sub-lattices are observed on cooling Er(3)CrS(6) (T(C)(Cr) = 30 K; T(C)(Er) = 11 K) and Er(2)CrS(4) (T(N)(Cr) = 42 K, T(N)(Er) = 10 K) whereas Er(6)Cr(2)S(11) exhibits ordering of the chromium sub-lattice only (T(N) = 11.4 K).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermoelectric behaviour of the transition-metal disulphides n-type NiCr2S4 and p-type CuCrS2 is investigated. Materials prepared by high-temperature reaction were consolidated using cold-pressing and sintering, hot-pressing (HP) in graphite dies or spark-plasma sintering (SPS) in tungsten carbide dies. The consolidation conditions have a marked influence on the electrical transport properties. In addition to the effect on sample density, altering the consolidation conditions results in changes to the sample composition, including the formation of impurity phases. Maximum room-temperature power factors are 0.18 mW m-1 K-2 and 0.09 mW m-1 K-2 for NiCr2S4 and CuCrS2, respectively. Thermal conductivities of ca. 1.4 and 1.2 W m-1 K-1 lead to figures of merit of 0.024 and 0.023 for NiCr2S4 and CuCrS2, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the orientational ordering on the surface of a sphere using Monte Carlo and Brownian dynamics simulations of rods interacting with an anisotropic potential. We restrict the orientations to the local tangent plane of the spherical surface and fix the position of each rod to be at a discrete point on the spherical surface. On the surface of a sphere, orientational ordering cannot be perfectly nematic due to the inevitable presence of defects. We find that the ground state of four +1/2 point defects is stable across a broad range of temperatures. We investigate the transition from disordered to ordered phase by decreasing the temperature and find a very smooth transition. We use fluctuations of the local directors to estimate the Frank elastic constant on the surface of a sphere and compare it to the planar case. We observe subdiffusive behavior in the mean square displacement of the defect cores and estimate their diffusion constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incorporation of cobalt in mixed metal carbonates is a possible route to the immobilization of this toxic element in the environment. However, the thermodynamics of (Ca,Co)CO3 solid solutions are still unclear due to conflicting data from experiment and from the observation of natural ocurrences. We report here the results of a computer simulation study of the mixing of calcite (CaCO3) and spherocobaltite (CoCO3), using density functional theory calculations. Our simulations suggest that previously proposed thermodynamic models, based only on the range of observed compositions, significantly overestimate the solubility between the two solids and therefore underestimate the extension of the miscibility gap under ambient conditions. The enthalpy of mixing of the disordered solid solution is strongly positive and moderately asymmetric: calcium incorporation in spherocobaltite is more endothermic than cobalt incorporation in calcite. Ordering of the impurities in (0001) layers is energetically favourable with respect to the disordered solid solution at low temperatures and intermediate compositions, but the ordered phase is still unstable to demixing. We calculate the solvus and spinodal lines in the phase diagram using a sub-regular solution model, and conclude that many Ca1-xCoxCO3 mineral solid solutions (with observed compositions of up to x=0.027, and above x=0.93) are metastable with respect to phase separation. We also calculate solid/aqueous distribution coefficients to evaluate the effect of the strong non-ideality of mixing on the equilibrium with aqueous solution, showing that the thermodynamically-driven incorporation of cobalt in calcite (and of calcium in spherocobaltite) is always very low, regardless of the Co/Ca ratio of the aqueous environment.