21 resultados para optical quenching of photoconductivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optically stimulated luminescence (OSL) signal within quartz may be enhanced by thermal transfer during pre-heating. This may occur via a thermally induced charge transfer from low temperature traps to the OSL traps. Thermal transfer may affect both natural and artificially irradiated samples. The effect, as empirically measured via recuperation tests, is typically observed to be negligible for old samples (<1% of natural signal). However, thermal transfer remains a major concern in the dating of young samples as thermal decay and transfers of geologically unstable traps (typically in the TL range 160–280°C) may be incomplete. Upon pre-heating such a sample might undergo thermal transfer to the dating trap and result in a De overestimate. As a result, there has been a tendency for workers to adopt less rigorous pre-heats for young samples. We have investigated the pre-heat dependence of 23 young quartz samples from various depositional environments using pre-heats between 170°C and 300°C, employing the single aliquot regeneration (SAR) protocol. SAR De's were also calculated for 25 additional young quartz samples of different depositional environments and compared with previous multiple aliquot additive dose (MAAD) data. Results demonstrate no significant De dependence upon pre-heat temperatures. A close correspondence between MAAD data and the current SAR data for the samples tested is also illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a summary of the principal physical and optical properties of aerosol particles using the FAAM BAE-146 instrumented aircraft during ADRIEX between 27 August and 6 September 2004, augmented by sunphotometer, lidar and satellite retrievals. Observations of anthropogenic aerosol, principally from industrial sources, were concentrated over the northern Adriatic Sea and over the Po Valley close to the aerosol sources. An additional flight was also carried out over the Black Sea to compare east and west European pollution. Measurements show the single-scattering albedo of dry aerosol particles to vary considerably between 0.89 and 0.97 at a wavelength of 0.55 μm, with a campaign mean within the polluted lower free troposphere of 0.92. Although aerosol concentrations varied significantly from day to day and during individual days, the shape of the aerosol size distribution was relatively consistent through the experiment, with no detectable change observed over land and over sea. There is evidence to suggest that the pollution aerosol within the marine boundary layer was younger than that in the elevated layer. Trends in the aerosol volume distribution show consistency with multiple-site AERONET radiometric observations. The aerosol optical depths derived from aircraft measurements show a consistent bias to lower values than both the AERONET and lidar ground-based radiometric observations, differences which can be explained by local variations in the aerosol column loading and by some aircraft instrumental artefacts. Retrievals of the aerosol optical depth and fine-mode (<0.5 μm radius) fraction contribution to the optical depth using MODIS data from the Terra and Aqua satellites show a reasonable level of agreement with the AERONET and aircraft measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A disposable backscatter instrument is described for optical detection of cloud in the atmosphere from a balloon-carried platform. It uses an ultra-bright light emitting diode (LED) illumination source with a photodiode detector. Scattering of the LED light by cloud droplets generates a small optical signal which is separated from background light fluctuations using a lock-in technique. The signal to noise obtained permits cloud detection using the scattered LED light, even in daytime. The response is interpreted in terms of the equivalent visual range within the cloud. The device is lightweight (150 g) and low power (∼30 mA), for use alongside a conventional meteorological radiosonde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 μm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (deff) from 2.3 to 19.4 μm and coarse mode volume median diameter (dvc) from 5.8 to 45.3 μm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with deff >12 μm, or dvc >25 μm) were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration. Single Scattering Albed (SSA) values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to deff. New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when deff is greater than 2 μm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have an impact on Saharan atmospheric dynamics and circulation,which should be taken into account by numerical weather prediction and climate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saharan dust affects the climate by altering the radiation balance and by depositing minerals to the Atlantic Ocean. Both are dependent on particle size. We present aircraft measurements comprising 42 profiles of size distribution (0.1–300 µm), representing freshly uplifted dust, regional aged dust, and dust in the Saharan Air Layer (SAL) over the Canary Islands. The mean effective diameter of dust in SAL profiles is 4.5 µm smaller than that in freshly uplifted dust, while the vertical structure changes from a low shallow layer (0–1.5 km) to a well-mixed deep Saharan dust layer (0–5 km). Size distributions show a loss of 60 to 90% of particles larger than 30 µm 12 h after uplift. The single scattering albedo (SSA) increases from 0.92 to 0.94 to 0.95 between fresh, aged, and SAL profiles: this is enough to alter heating rates by 26%. Some fresh dust close to the surface shows SSA as low as 0.85

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new coupled cloud physics–radiation parameterization of the bulk optical properties of ice clouds is presented. The parameterization is consistent with assumptions in the cloud physics scheme regarding particle size distributions (PSDs) and mass–dimensional relationships. The parameterization is based on a weighted ice crystal habit mixture model, and its bulk optical properties are parameterized as simple functions of wavelength and ice water content (IWC). This approach directly couples IWC to the bulk optical properties, negating the need for diagnosed variables, such as the ice crystal effective dimension. The parameterization is implemented into the Met Office Unified Model Global Atmosphere 5.0 (GA5) configuration. The GA5 configuration is used to simulate the annual 20-yr shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere (TOA), as well as the temperature structure of the atmosphere, under various microphysical assumptions. The coupled parameterization is directly compared against the current operational radiation parameterization, while maintaining the same cloud physics assumptions. In this experiment, the impacts of the two parameterizations on the SW and LW radiative effects at TOA are also investigated and compared against observations. The 20-yr simulations are compared against the latest observations of the atmospheric temperature and radiative fluxes at TOA. The comparisons demonstrate that the choice of PSD and the assumed ice crystal shape distribution are as important as each other. Moreover, the consistent radiation parameterization removes a long-standing tropical troposphere cold temperature bias but slightly warms the southern midlatitudes by about 0.5 K.