29 resultados para open source seismic data processing packages
Resumo:
The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System (GNSS) radio occultation (RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an (climate) observing system simulation experiment over the 25-year period 2001 to 2025, which involves quasi-realistic modeling of the neutral atmosphere and the ionosphere. We carried out two climate simulations with the general circulation model MAECHAM5 (Middle Atmosphere European Centre/Hamburg Model Version 5) of the MPI-M Hamburg, covering the period 2001–2025: One control run with natural variability only and one run also including anthropogenic forcings due to greenhouse gases, sulfate aerosols, and tropospheric ozone. On the basis of this, we perform quasi-realistic simulations of RO observables for a small GNSS receiver constellation (six satellites), state-of-the-art data processing for atmospheric profiles retrieval, and a statistical analysis of temperature trends in both the “observed” climatology and the “true” climatology. Here we describe the setup of the experiment and results from a test bed study conducted to obtain a basic set of realistic estimates of observational errors (instrument- and retrieval processing-related errors) and sampling errors (due to spatial-temporal undersampling). The test bed results, obtained for a typical summer season and compared to the climatic 2001–2025 trends from the MAECHAM5 simulation including anthropogenic forcing, were found encouraging for performing the full 25-year experiment. They indicated that observational and sampling errors (both contributing about 0.2 K) are consistent with recent estimates of these errors from real RO data and that they should be sufficiently small for monitoring expected temperature trends in the global atmosphere over the next 10 to 20 years in most regions of the upper troposphere and lower stratosphere (UTLS). Inspection of the MAECHAM5 trends in different RO-accessible atmospheric parameters (microwave refractivity and pressure/geopotential height in addition to temperature) indicates complementary climate change sensitivity in different regions of the UTLS so that optimized climate monitoring shall combine information from all climatic key variables retrievable from GNSS RO data.
Resumo:
Deep Brain Stimulator devices are becoming widely used for therapeutic benefits in movement disorders such as Parkinson's disease. Prolonging the battery life span of such devices could dramatically reduce the risks and accumulative costs associated with surgical replacement. This paper demonstrates how an artificial neural network can be trained using pre-processing frequency analysis of deep brain electrode recordings to detect the onset of tremor in Parkinsonian patients. Implementing this solution into an 'intelligent' neurostimulator device will remove the need for continuous stimulation currently used, and open up the possibility of demand-driven stimulation. Such a methodology could potentially decrease the power consumption of a deep brain pulse generator.
Resumo:
Modern methods of spawning new technological motifs are not appropriate when it is desired to realize artificial life as an actual real world entity unto itself (Pattee 1995; Brooks 2006; Chalmers 1995). Many fundamental aspects of such a machine are absent in common methods, which generally lack methodologies of construction. In this paper we mix classical and modern studies in order to attempt to realize an artificial life form from first principles. A model of an algorithm is introduced, its methodology of construction is presented, and the fundamental source from which it sprang is discussed.
Resumo:
Liquid chromatography-mass spectrometry (LC-MS) datasets can be compared or combined following chromatographic alignment. Here we describe a simple solution to the specific problem of aligning one LC-MS dataset and one LC-MS/MS dataset, acquired on separate instruments from an enzymatic digest of a protein mixture, using feature extraction and a genetic algorithm. First, the LC-MS dataset is searched within a few ppm of the calculated theoretical masses of peptides confidently identified by LC-MS/MS. A piecewise linear function is then fitted to these matched peptides using a genetic algorithm with a fitness function that is insensitive to incorrect matches but sufficiently flexible to adapt to the discrete shifts common when comparing LC datasets. We demonstrate the utility of this method by aligning ion trap LC-MS/MS data with accurate LC-MS data from an FTICR mass spectrometer and show how hybrid datasets can improve peptide and protein identification by combining the speed of the ion trap with the mass accuracy of the FTICR, similar to using a hybrid ion trap-FTICR instrument. We also show that the high resolving power of FTICR can improve precision and linear dynamic range in quantitative proteomics. The alignment software, msalign, is freely available as open source.
Resumo:
Because of the importance and potential usefulness of construction market statistics to firms and government, consistency between different sources of data is examined with a view to building a predictive model of construction output using construction data alone. However, a comparison of Department of Trade and Industry (DTI) and Office for National Statistics (ONS) series shows that the correlation coefcient (used as a measure of consistency) of the DTI output and DTI orders data and the correlation coefficient of the DTI output and ONS output data are low. It is not possible to derive a predictive model of DTI output based on DTI orders data alone. The question arises whether or not an alternative independent source of data may be used to predict DTI output data. Independent data produced by Emap Glenigan (EG), based on planning applications, potentially offers such a source of information. The EG data records the value of planning applications and their planned start and finish dates. However, as this data is ex ante and is not correlated with DTI output it is not possible to use this data to describe the volume of actual construction output. Nor is it possible to use the EG planning data to predict DTI construc-tion orders data. Further consideration of the issues raised reveal that it is not practically possible to develop a consistent predictive model of construction output using construction statistics gathered at different stages in the development process.
Resumo:
Web Services for Remote Portlets (WSRP) is gaining attention among portal developers and vendors to enable easy development, increased richness in functionality, pluggability, and flexibility of deployment. Whilst currently not supporting all WSRP functionalities, open-source portal frameworks could in future use WSRP Consumers to access remote portlets found from a WSRP Producer registry service. This implies that we need a central registry for the remote portlets and a more expressive WSRP Consumer interface to implement the remote portlet functions. This paper reports on an investigation into a new system architecture, which includes a Web Services repository, registry, and client interface. The Web Services repository holds portlets as remote resource producers. A new data structure for expressing remote portlets is found and published by populating a Universal Description, Discovery and Integration (UDDI) registry. A remote portlet publish and search engine for UDDI has also been developed. Finally, a remote portlet client interface was developed as a Web application. The client interface supports remote portlet features, as well as window status and mode functions. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
It is widely recognized that small businesses with less than 50 employees make significant contributions to the prosperity of local, regional, and national economies. They are a major source of job creation and a driving force of economic growth for developed countries like the USA (Headd, 2005; SBA, 2005), the UK (Dixon, Thompson, & McAllister, 2002; SBS, 2005), Europe (European Commission, 2003), and developing countries such as China (Bo, 2005). The economic potential is further strengthened when firms collaborate with each other; for example, formation of a supply chain, strategic alliances, or sharing of information and resources (Horvath, 2001; O’Donnell, Cilmore, Cummins, & Carson, 2001; MacGregor, 2004; Todeva & Knoke, 2005). Owing to heterogeneous aspects of small businesses, such as firm size and business sector, a single e-business solution is unlikely to be suitable for all firms (Dixon et al., 2002; Taylor & Murphy, 2004a); however, collaboration requires individual firms to adopt standardized, simplified solutions based on open architectures and data design (Horvath, 2001). The purpose of this article is to propose a conceptual e-business framework and a generic e-catalogue, which enables small businesses to collaborate through the creation of an e-marketplace. To assist with the task, analysis of data from 6,000 small businesses situated within a locality of Greater Manchester, England within the context of an e-business portal is incorporated within this study.
Resumo:
Providing high quality and timely feedback to students is often a challenge for many staff in higher education as it can be both time-consuming and frustratingly repetitive. From the student perspective, feedback may sometimes be considered unhelpful, confusing and inconsistent and may not always be provided within a timeframe that is considered to be ‘useful’. The ASSET project, based at the University of Reading, addresses many of these inherent challenges by encouraging the provision of feedback that supports learning, i.e. feedback that contains elements of ‘feed-forward’, is of a high quality and is delivered in a timely manner. In particular, the project exploits the pedagogic benefits of video/audio media within a Web 2.0 context to provide a new, interactive resource, ‘ASSET’, to enhance the feedback experience for both students and staff. A preliminary analysis of both our quantitative and qualitative pedagogic data demonstrate that the ASSET project has instigated change in the ways in which both staff and students think about, deliver, and engage with feedback. For example, data from our online questionnaires and focus groups with staff and students indicate a positive response to the use of video as a medium for delivering feedback to students. In particular, the academic staff engaged in piloting the ASSET resource indicated that i) using video has made them think more, and in some cases differently, about the ways in which they deliver feedback to students and ii) they now see video as an effective means of making feedback more useful and engaging for students. Moreover, the majority of academic staff involved in the project have said they will continue to use video feedback. From the student perspective, 60% of those students whose lecturers used ASSET to provide video feedback said that “receiving video feedback encouraged me to take more notice of the feedback compared with normal methods” and 80% would like their lecturer to continue to use video as a method for providing feedback. An important aim of the project was for it to complement existing University-wide initiatives on feedback and for ASSET to become a ‘model’ resource for staff and students wishing to explore video as a medium for feedback provision. An institutional approach was therefore adopted and key members of Senior Management, academics, T&L support staff, IT support and Student Representatives were embedded within the project from the start. As with all initiatives of this kind, a major issue is the future sustainability of the ASSET resource and to have had both ‘top-down’ and ‘bottom-up’ support for the project has been extremely beneficial. In association with the project team the University is currently exploring the creation of an open-source, two-tiered video supply solution and a ‘framework’ (that other HEIs can adopt and/or adapt) to support staff in using video for feedback provision. In this way students and staff will have new opportunities to explore video and to exploit the benefits of this medium for supporting learning.
Resumo:
Studies of face recognition and discrimination provide a rich source of data and debate on the nature of their processing, in particular through using inverted faces. This study draws parallels between the features of typefaces and faces, as letters share a basic configuration, regardless of typeface, that could be seen as similar to faces. Typeface discrimination is compared using paragraphs of upright letters and inverted letters at three viewing durations. Based on previously reported effects of expertise, the prediction that designers would be less accurate when letters are inverted, whereas nondesigners would have similar performance in both orientations, was confirmed. A proposal is made as to which spatial relations between typeface components constitute holistic and configural processing, posited as the basis for better discrimination of the typefaces of upright letters. Such processing may characterize designers’ perceptual abilities, acquired through training.
Resumo:
This chapter introduces the latest practices and technologies in the interactive interpretation of environmental data. With environmental data becoming ever larger, more diverse and more complex, there is a need for a new generation of tools that provides new capabilities over and above those of the standard workhorses of science. These new tools aid the scientist in discovering interesting new features (and also problems) in large datasets by allowing the data to be explored interactively using simple, intuitive graphical tools. In this way, new discoveries are made that are commonly missed by automated batch data processing. This chapter discusses the characteristics of environmental science data, common current practice in data analysis and the supporting tools and infrastructure. New approaches are introduced and illustrated from the points of view of both the end user and the underlying technology. We conclude by speculating as to future developments in the field and what must be achieved to fulfil this vision.
Resumo:
The large scale urban consumption of energy (LUCY) model simulates all components of anthropogenic heat flux (QF) from the global to individual city scale at 2.5 × 2.5 arc-minute resolution. This includes a database of different working patterns and public holidays, vehicle use and energy consumption in each country. The databases can be edited to include specific diurnal and seasonal vehicle and energy consumption patterns, local holidays and flows of people within a city. If better information about individual cities is available within this (open-source) database, then the accuracy of this model can only improve, to provide the community data from global-scale climate modelling or the individual city scale in the future. The results show that QF varied widely through the year, through the day, between countries and urban areas. An assessment of the heat emissions estimated revealed that they are reasonably close to those produced by a global model and a number of small-scale city models, so results from LUCY can be used with a degree of confidence. From LUCY, the global mean urban QF has a diurnal range of 0.7–3.6 W m−2, and is greater on weekdays than weekends. The heat release from building is the largest contributor (89–96%), to heat emissions globally. Differences between months are greatest in the middle of the day (up to 1 W m−2 at 1 pm). December to February, the coldest months in the Northern Hemisphere, have the highest heat emissions. July and August are at the higher end. The least QF is emitted in May. The highest individual grid cell heat fluxes in urban areas were located in New York (577), Paris (261.5), Tokyo (178), San Francisco (173.6), Vancouver (119) and London (106.7). Copyright © 2010 Royal Meteorological Society
Resumo:
SOA (Service Oriented Architecture), workflow, the Semantic Web, and Grid computing are key enabling information technologies in the development of increasingly sophisticated e-Science infrastructures and application platforms. While the emergence of Cloud computing as a new computing paradigm has provided new directions and opportunities for e-Science infrastructure development, it also presents some challenges. Scientific research is increasingly finding that it is difficult to handle “big data” using traditional data processing techniques. Such challenges demonstrate the need for a comprehensive analysis on using the above mentioned informatics techniques to develop appropriate e-Science infrastructure and platforms in the context of Cloud computing. This survey paper describes recent research advances in applying informatics techniques to facilitate scientific research particularly from the Cloud computing perspective. Our particular contributions include identifying associated research challenges and opportunities, presenting lessons learned, and describing our future vision for applying Cloud computing to e-Science. We believe our research findings can help indicate the future trend of e-Science, and can inform funding and research directions in how to more appropriately employ computing technologies in scientific research. We point out the open research issues hoping to spark new development and innovation in the e-Science field.
Resumo:
In recent years, there has been an increasing interest in the adoption of emerging ubiquitous sensor network (USN) technologies for instrumentation within a variety of sustainability systems. USN is emerging as a sensing paradigm that is being newly considered by the sustainability management field as an alternative to traditional tethered monitoring systems. Researchers have been discovering that USN is an exciting technology that should not be viewed simply as a substitute for traditional tethered monitoring systems. In this study, we investigate how a movement monitoring measurement system of a complex building is developed as a research environment for USN and related decision-supportive technologies. To address the apparent danger of building movement, agent-mediated communication concepts have been designed to autonomously manage large volumes of exchanged information. In this study, we additionally detail the design of the proposed system, including its principles, data processing algorithms, system architecture, and user interface specifics. Results of the test and case study demonstrate the effectiveness of the USN-based data acquisition system for real-time monitoring of movement operations.
Resumo:
This special issue is focused on the assessment of algorithms for the observation of Earth’s climate from environ- mental satellites. Climate data records derived by remote sensing are increasingly a key source of insight into the workings of and changes in Earth’s climate system. Producers of data sets must devote considerable effort and expertise to maximise the true climate signals in their products and minimise effects of data processing choices and changing sensors. A key choice is the selection of algorithm(s) for classification and/or retrieval of the climate variable. Within the European Space Agency Climate Change Initiative, science teams undertook systematic assessment of algorithms for a range of essential climate variables. The papers in the special issue report some of these exercises (for ocean colour, aerosol, ozone, greenhouse gases, clouds, soil moisture, sea surface temper- ature and glaciers). The contributions show that assessment exercises must be designed with care, considering issues such as the relative importance of different aspects of data quality (accuracy, precision, stability, sensitivity, coverage, etc.), the availability and degree of independence of validation data and the limitations of validation in characterising some important aspects of data (such as long-term stability or spatial coherence). As well as re- quiring a significant investment of expertise and effort, systematic comparisons are found to be highly valuable. They reveal the relative strengths and weaknesses of different algorithmic approaches under different observa- tional contexts, and help ensure that scientific conclusions drawn from climate data records are not influenced by observational artifacts, but are robust.