18 resultados para network solution
Resumo:
It has been years since the introduction of the Dynamic Network Optimization (DNO) concept, yet the DNO development is still at its infant stage, largely due to a lack of breakthrough in minimizing the lengthy optimization runtime. Our previous work, a distributed parallel solution, has achieved a significant speed gain. To cater for the increased optimization complexity pressed by the uptake of smartphones and tablets, however, this paper examines the potential areas for further improvement and presents a novel asynchronous distributed parallel design that minimizes the inter-process communications. The new approach is implemented and applied to real-life projects whose results demonstrate an augmented acceleration of 7.5 times on a 16-core distributed system compared to 6.1 of our previous solution. Moreover, there is no degradation in the optimization outcome. This is a solid sprint towards the realization of DNO.
Resumo:
The simulated annealing approach to crystal structure determination from powder diffraction data, as implemented in the DASH program, is readily amenable to parallelization at the individual run level. Very large scale increases in speed of execution can be achieved by distributing individual DASH runs over a network of computers. The CDASH program delivers this by using scalable on-demand computing clusters built on the Amazon Elastic Compute Cloud service. By way of example, a 360 vCPU cluster returned the crystal structure of racemic ornidazole (Z0 = 3, 30 degrees of freedom) ca 40 times faster than a typical modern quad-core desktop CPU. Whilst used here specifically for DASH, this approach is of general applicability to other packages that are amenable to coarse-grained parallelism strategies.
Resumo:
The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary methods are numerous, and methodologies to compare the performance of these methods beyond obtaining a minimal solution for a given problem are currently lacking. A methodology to compare algorithms based on an efficiency rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically determines the performance of a given algorithm while also considering the quality of the obtained solution and the required computational effort. From the wide range of available evolutionary algorithms, four algorithms were selected to implement the methodology: a PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simulations, a statistical analysis was performed based on the specific parameters each algorithm requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency measure indicated that PGA is the most efficient algorithm for problems of greater complexity and that HS is the most efficient algorithm for less complex problems. However, the main contribution of this work is that the proposed efficiency ratio provides a neutral strategy to compare optimization algorithms and may be useful in the future to select the most appropriate algorithm for different types of optimization problems.