141 resultados para mycolic acids
Resumo:
The increase in fractional rate of protein synthesis (K-s) in the skeletal muscle of growing rats during the transition from fasted to fed state has been explained by the synergistic action of a rise in plasma insulin and branched-chain amino acids (BCAA). Since growing lambs Also exhibit an increase in K-s with level of feed intake, the objective of the present study was to determine if this synergistic relationship between insulin and BCAA also occurs in ruminant animals. Six 30 kg fasted (72 h) lambs (8 months of age) received each of four treatments, which were based on continuous infusion into the jugular vein for 6 h of: (1) saline (155 mmol NaCl/l); (2) a mixture of BCAA (0.778 mumol leucine, 0.640 mumol isoleucine and 0.693 mumol valine/min.kg); (3) 18.7 mumol glucose/min.kg (to induce endogenous insulin secretion): (4) co-infusion of BCAA and glucose. Within each period all animals received the same isotope of phenylalanine, (Phe) as follows: (1) L-[1-C-13]Phe; (2) L-phenyl-[ring H-2(5)]-alanine; (3) L-[N-15]Phe; (4) L-[ring 2,6-H-3]Phe. Blood was sampled serially during infusions to measure plasma concentrations of insulin, glucose and amino acids, and plasma free Phe isotopic activity; biopsies were taken 6 h after the beginning of infusions to determine K-s in in. longissimus dorsi and vastus muscle. Compared with control (saline-infused) lambs, K-s was increased by an average of 40% at the end of glucose infusion, but this effect was not statistically significant in either of the muscles sampled. BCAA infusion, alone or in combination with glucose, also had no significant effect on K-s compared with control sheep. K-s was approximately 60% greater for vastus muscle than for m. longissimus dorsi (P<0.01), regardless of treatment. It is concluded that there are signals other than insulin and BCAA that are responsible for the feed-induced increase in K-s in muscle of growing ruminant animals.
Resumo:
One of the largest contributions to biologically available nitrogen comes from the reduction of N-2 to ammonia by rhizobia in symbiosis with legumes. Plants supply dicarboxylic acids as a carbon source to bacteroids, and in return they receive ammonia. However, metabolic exchange must be more complex, because effective N-2 fixation by Rhizobium leguminosarum bv viciae bacteroids requires either one of two broad-specificity amino acid ABC transporters (Aap and Bra). It was proposed that amino acids cycle between plant and bacteroids, but the model was unconstrained because of the broad solute specificity of Aap and Bra. Here, we constrain the specificity of Bra and ectopically express heterologous transporters to demonstrate that branched-chain amino acid (LIV) transport is essential for effective N-2 fixation. This dependence of bacteroids on the plant for LIV is not due to their known down-regulation of glutamate synthesis, because ectopic expression of glutamate dehydrogenase did not rescue effective N-2 fixation. Instead, the effect is specific to LIV and is accompanied by a major reduction in transcription and activity of LIV biosynthetic enzymes. Bacteroids become symbiotic auxotrophs for LIV and depend on the plant for their supply. Bacteroids with aap bra null mutations are reduced in number, smaller, and have a lower DNA content than wild type. Plants control LIV supply to bacteroids, regulating their development and persistence. This makes it a critical control point for regulation of symbiosis. MICROBIOLOGY
Resumo:
The complex and variable composition of natural sediments makes it very difficult to predict the bioavailability and bioaccumulation of sediment-bound contaminants. Several approaches have been proposed to overcome this problem, including an experimental model using artificial particles with or without humic acids as a source of organic matter. For this work, we have applied this experimental model, and also a sample of a natural sediment, to investigate the uptake and bioaccumulation of 2,4-dichlorophenol (2,4-DCP) by Sphaerium corneum. Additionally, the particle-water partition coefficients (K-d) were calculated. The results showed that the bioaccumulation of 2,4-DCP by clams did not depend solely on the levels of chemical dissolved, but also on the amount sorbed onto the particles and the characteristics and the strength of that binding. This study confirms the value of using artificial particles as a suitable experimental model for assessing the fate of sediment-bound contaminants. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We report herein, the first generation of unsymmetrical ketone-derived chiral stabilized azomethine ylides. Intrairiolecular and intermolecular cycloaddition strategies have been utilized to synthesize both an enantiornerically pure bicyclic proline derivative and an enantionierically pure beta-hydroxy-alpha-amino acid.
Resumo:
The crystal structure of a terminally protected tripeptide Boc-Leu-Aib-beta-Ala-OMe 1 containing non-coded amino acids reveals that it adopts a beta-turn structure, which sell-assembles to form a supramolecular beta-sheet via non-covalent interactions. The SEM image of peptide 1 exhibits amyloid-like fibrillar morphology in the solid state. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Exploitation of the dual dehydrating and fluorodeoxygenating properties of the dialkylaminosulfurtrifluorides has allowed access to the C3-fluorinated analogues of (-)-shikimic acid. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Three new supramolecular assemblies of co-crystallized metal complexes and aliphatic dicarboxylic acids, {[Cu(pic)(2)(H2O)(2)](H(2)mal)}(n) (1), {[Cu(pic)(2)(H2O)(2)](H(2)mal)(2)(H2O)(2)}(n) (2) and {[Cu(pic)(2)(MeOH)](H(2)succ)}(n) (3) {Hpic = 2-picolinic acid, H(2)mal = malonic acid and H(2)succ = succinic acid} have been synthesized and characterized by X-ray single-crystal structure determination. The crystal packings of the complexes reveal that supramolecular associations of the monomeric complex units lead to the formation of layers through hydrogen bonding. In all the complexes, the dicarboxylic acid units connect the 2-D layers to act as pillars. The interaction between water molecules and the dicarboxylic acid plays an important role in the overall supramolecular assembly. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A series of self-assembling terminally blocked tripeptides (containing coded amino acids) form gels in various aromatic solvents including benzene, toluene, xylenes at low concentrations. However these tripeptides do not form gels in aliphatic hydrocarbons like n-hexane, cyclohexane, n-decane etc. Morphological studies of the dried gel indicate the presence of an entangled fibrous network, which is responsible for gelation. Differential scanning calorimetric (DSC) studies of the gels produced by peptide 1 clearly demonstrates thermoreversible nature of the gel and tripeptide-solvent complex may be produced during gel formation. FT-IR and H-1 NMR studies of the gels demonstrate that an intermolecular hydrogen-bonding network is formed during gelation. Single crystal X-ray diffraction studies for peptides 1, 2 and 3 have been performed to investigate the molecular arrangement that might be responsible for forming the fibrous network of these self-assembling peptide gelators. It has been found that the morph responsible for gelation of peptides 1, 2 and 3 in benzene is somewhat different from that of its xerogel.
Resumo:
Single crystal X-ray diffraction studies show that the extended structure of dipeptide I Boc-beta-Ala-m-ABA-OMe (m-ABA: meta-aminobenzoic acid) self-assembles in the solid state by intermolecular hydrogen bonding to create an infinite parallel P-sheet structure. In dipeptide II Boc-gamma-Abu-m-ABA-OMe (gamma-Abu: gamma-aminobutyric acid), two such parallel beta-sheets are further cross-linked by intermolecular hydrogen bonding through m-aminobenzoic acid moieties. SEM (scanning electron microscopy) studies reveal that both the peptides I and II form amyloid-like fibrils in the solid state. The fibrils are also found to be stained readily by Congo red, a characteristic feature of the amyloid fiber whose accumulation causes several fatal diseases such as Alzheimer's, prion-protein etc.
Resumo:
Single crystal X-ray diffraction studies reveal that three hexapeptides with general formula Boc-Ile-Aib-Xx-Ile-Aib-Yy-OMe, where Xx and Yy are Leu in peptide I, Len and Phe in peptide II, and Phe and Leu in peptide III, respectively, adopt equivalent conformations that can be described as mixed 3(10)/alpha-helice with two 4 -> 1 and two 5 -> 1 intramolecular N-H center dot center dot center dot O=C H-bonds. The peptides do not generate any helixterminating Schellman motif despite having Aib at the penultimate position from C-terminus. In the crystalline state, the helices are packed in head-to-tail fashion through intermolecular hydrogen bonds to create supramolecular helical structures. The CD Studies of the three hexapeptides in acetonitrile indicate that they are folded in well-developed 3(10)-helical structures. NMR studies of peptide I in CDCl3 also suggest the formation of a homogeneous 3 m-helical structure. The field emission scanning electron microscopic (FE-SEM) images of peptide 11 in the solid state reveal a non-twisted ribbon-like morphology, which is formed through lateral association of non-twisted filaments. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The preparation of enantiomerically pure threo-beta-amino-alpha-hydroxy acids via 1,3-dipolar cycloadditions of imine dipolarophiles with the chiral isomunchnone derived from (5R)-5-phenylmorpholin-3-one 1 is described. The cycloadducts were obtained with excellent diastereofacial- and exo-selectivity. Subsequent hydrolysis and chemoselective exocyclic amide cleavage afforded the threo-beta-amino-alpha-hydroxy acids with recovery of the initial chiral auxiliary. (C) 2009 Published by Elsevier Ltd.
Resumo:
Gas-phase ozonolysis of terpinolene was studied in static chamber experiments using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. Two isomers of C-7-diacids and three isomers of C-7-aldehydic acids were identified in the condensed phase after derivatisation. Possible mechanisms of formation of these acids were investigated using different OH radical scavengers and relative humidities, and were compared to those reported earlier for the ozonolysis of beta-pinene. In addition, branching ratios for some of the individual reaction steps, e. g. the branching ratio between the two hydroperoxide channels of the C-7-CI, were deduced from the quantitative product yield data. Branching ratios for POZ decomposition and the stabilisation/decomposition of the C-7-CI were also obtained from measurements of the C-7 primary carbonyl product.
Resumo:
This paper describes experimental studies aimed at elucidating mechanisms for the formation of low-volatility organic acids in the gas-phase ozonolysis of 3-carene. Experiments were carried out in a static chamber under 'OH-free' conditions. A range of multifunctional acids-which are analogous to those observed from alpha-pinene ozonolysis-were identified in the condensed phase using gas chromatography coupled to mass spectrometry after derivation. Product yields were determined as a function of different OH radical scavengers and relative humidities to give mechanistic information about their routes of formation. Furthermore, an enone and an enal derived from 3-carene were ozonised in order to probe the early mechanistic steps in the reaction and, in particular, which of the two initially formed Criegee intermediates gives rise to which products. Branching ratios for the formation of the two Criegee Intermediates are determined. Similarities and differences in product formation from 3-carene and alpha-pinene ozonolysis are discussed and possible mechanisms-supported by experimental evidence-are developed for all acids investigated.