46 resultados para mutation accumulation
Resumo:
Mitochondrial DNA (mtDNA) mutations are an important cause of genetic disease and have been proposed to play a role in the ageing process. Quantification of total mtDNA mutation load in ageing tissues is difficult as mutational events are rare in a background of wild-type molecules, and detection of individual mutated molecules is beyond the sensitivity of most sequencing based techniques. The methods currently most commonly used to document the incidence of mtDNA point mutations in ageing include post-PCR cloning, single-molecule PCR and the random mutation capture assay. The mtDNA mutation load obtained by these different techniques varies by orders of magnitude, but direct comparison of the three techniques on the same ageing human tissue has not been performed. We assess the procedures and practicalities involved in each of these three assays and discuss the results obtained by investigation of mutation loads in colonic mucosal biopsies from ten human subjects.
Resumo:
Studies on exposure of non-targets to anticoagulant rodenticides have largely focussed on predatory birds and mammals; insectivores have rarely been studied. We investigated the exposure of 120 European hedgehogs (Erinaceus europaeus) from throughout Britain to first- and second-generation anticoagulant rodenticides (FGARs and SGARs) using high performance liquid chromatography coupled with fluorescence detection (HPLC) and liquid-chromatography mass spectrometry (LCMS). The proportion of hedgehogs with liver SGAR concentrations detected by HPLC was 3-13% per compound, 23% overall. LCMS identified much higher prevalence for difenacoum and bromadiolone, mainly because of greater ability to detect low level contamination. The overall proportion of hedgehogs with LCMS-detected residues was 57.5% (SGARs alone) and 66.7% (FGARs and SGARs combined); 27 (22.5%) hedgehogs contained >1 rodenticide. Exposure of insectivores and predators to anticoagulant rodenticides appears to be similar. The greater sensitivity of LCMS suggests that hitherto exposure of non-targets is likely to have been under-estimated using HPLC techniques.
Resumo:
Mitochondrial DNA (mtDNA) mutations are an important cause of genetic disease and have been proposed to play a role in the ageing process. Quantification of total mtDNA mutation load in ageing tissues is difficult as mutational events are rare in a background of wild-type molecules, and detection of individual mutated molecules is beyond the sensitivity of most sequencing based techniques. The methods currently most commonly used to document the incidence of mtDNA point mutations in ageing include post-PCR cloning, single-molecule PCR and the random mutation capture assay. The mtDNA mutation load obtained by these different techniques varies by orders of magnitude, but direct comparison of the three techniques on the same ageing human tissue has not been performed. We assess the procedures and practicalities involved in each of these three assays and discuss the results obtained by investigation of mutation loads in colonic mucosal biopsies from ten human subjects.
Resumo:
Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice and Arabidopsis while less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca L. (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, the SEASONAL FLOWERING LOCUS which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent LD suppression of flowering, and the early flowering that then occurs under LD is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca, and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.
Resumo:
It is well established that the glutamate decarboxylase (GAD) system is central to the survival of Listeria monocytogenes at low pH, both in acidic foods and within the mammalian stomach. The accepted model proposes that under acidic conditions extracellular glutamate is transported into the cell in exchange for an intracellular gamma-aminobutyrate (GABA(i)). The glutamate is then decarboxylated to GABA(i), a reaction that consumes a proton, thereby helping to prevent acidification of the cytoplasm. In this study, we show that glutamate supplementation had no influence on either growth rate at pH 5.0 or survival at pH 2.5 when L. monocytogenes 10403S was grown in a chemically defined medium (DM). In response to acidification, cells grown in DM failed to efflux GABA, even when glutamate was added to the medium. In contrast, in brain heart infusion (BHI), the same strain produced significant extracellular GABA (GABA(e)) in response to acidification. In addition, high levels of GABA(i) (>80 mM) were found in the cytoplasm in response to low pH in both growth media. Medium-swap and medium-mixing experiments revealed that the GABA efflux apparatus was nonfunctional in DM, even when glutamate was present. It was also found that the GadT2D2 antiporter/decarboxylase system was transcribed poorly in DM-grown cultures while overexpression of gadD1T1 and gadD3 occurred in response to pH 3.5. Interestingly, BHI-grown cells did not respond with upregulation of any of the GAD system genes when challenged at pH 3.5. The accumulation of GABA(i) in cells grown in DM in the absence of extracellular glutamate indicates that intracellular glutamate is the source of the GABA(i). These results demonstrate that GABA production can be uncoupled from GABA efflux, a finding that alters the way we should view the operation of bacterial GAD systems.
Resumo:
Life-history traits vary substantially across species, and have been demonstrated to affect substitution rates. We compute genomewide, branch-specific estimates of male mutation bias (the ratio of male-to-female mutation rates) across 32 mammalian genomes and study how these vary with life-history traits (generation time, metabolic rate, and sperm competition). We also investigate the influence of life-history traits on substitution rates at unconstrained sites across a wide phylogenetic range. We observe that increased generation time is the strongest predictor of variation in both substitution rates (for which it is a negative predictor) and male mutation bias (for which it is a positive predictor). Although less significant, we also observe that estimates of metabolic rate, reflecting replication-independent DNA damage and repair mechanisms, correlate negatively with autosomal substitution rates, and positively with male mutation bias. Finally, in contrast to expectations, we find no significant correlation between sperm competition and either autosomal substitution rates or male mutation bias. Our results support the important but frequently opposite effects of some, but not all, life history traits on substitution rates. KEY WORDS: Generation time, genome evolution, metabolic rate, sperm competition.
Resumo:
A LightCycler-based PCR-hybridization gyrA mutation assay (GAMA) was developed to rapidly detect gyrA point mutations in multiresistant (MR) Salmonella enterica serotype Typhimurium DT104 with decreased susceptibility to ciprofloxacin (MIC, 0.25 to 1.0 mg/liter). Ninety-two isolates (49 human, 43 animal) were tested with three individual oligonucleotide probes directed against an Asp-87-to-Asn (GAC --> AAC) mutation, an Asp-87-to-Gly (GAC --> GGC) mutation, and a Ser-83-to-Phe (TCC --> TTC) mutation. Strains homologous to the probes could be distinguished from strains that had different mutations by their probe-target melting temperatures. Thirty-seven human and 30 animal isolates had an Asp-87-to-Asn substitution, 6 human and 6 animal isolates had a Ser-83-to-Phe substitution, and 5 human and 2 animal isolates had an Asp-87-to-Gly substitution. The remaining six strains all had mismatches with the three probes and therefore different gyrA mutations. The sequencing of gyrA from these six isolates showed that one human strain and two animal strains had an Asp-87-to-Tyr (GAC --> TAC) substitution and two animal strains had a Ser-83-to-Tyr (TCC --> TAC) substitution. One animal strain had no gyrA mutation, suggesting that this isolate had a different mechanism of resistance. Fifty-eight of the strains tested were indistinguishable by several different typing methods including antibiograms, pulsed-field gel gel electrophoresis, and plasmid profiling, although they could be further subdivided according to gyrA mutation. This study confirmed that MR DT104 with decreased susceptibility to ciprofloxacin from humans and food animals in England and Wales may have arisen independently against a background of clonal spread of MR DT104.
Resumo:
Aims: In Escherichia coli, increased expression of efflux pumps and/or decreased expression of porins can confer multiple antibiotic resistance (MAR), causing resistance to at least three unrelated classes of antibiotics, detergents and dyes. It was hypothesized that in Campylobacter jejuni, the efflux systems CmeABC, CmeDEF and the major outer membrane porin protein, MOMP (encoded by porA) could confer MAR. Methods: The expression of cmeB, cmeF and porA in 32 MAR C. jejuni isolated from humans or poultry was determined by comparative (C)-reverse transcriptase (RT)-PCR and denaturing DHPLC. A further 13 ethidium bromide-resistant isolates and three control strains were also investigated. Accumulation of ciprofloxacin carbonyl cyanide-m-chlorophenyl hydrazone (CCCP) was also determined for all strains. Results: Although resistance to ethidium bromide has been associated with MAR, expression of all three genes was similar in the ethidium bromide-resistant isolates. These data indicate that CmeB, CmeF and MOMP play no role in resistance to this agent in C. jejuni. Six MAR isolates over-expressed cmeB, 3/32 over-expressed cmeB and cmeF. No isolates over-expressed cmeF alone. Expression of porA was similar in all isolates. All nine isolates that over-expressed cmeB contained a mutation in cmeR, substituting glycine 86 with alanine. All cmeB over-expressing isolates also accumulated low concentrations of ciprofloxacin, which were restored to wild-type levels in the presence of CCCP. Conclusions: These data indicate that over-expression of cmeB is associated with MAR in isolates of C. jejuni. However, as cmeB was over-expressed by only one-third (9/32) of MAR isolates, these data also indicate other mechanisms of MAR in C. jejuni.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) strains comprise a broad group of bacteria, some of which cause attaching and effacing (AE) lesions and enteritis in humans and animals. Non-O157:H7 EHEC strains contain the gene efa-1 (referred to in previous publications as efa1), which influences adherence to cultured epithelial cells. An almost identical gene in enteropathogenic E. coli (lifA) mediates the inhibition of lymphocyte proliferation and proinflammatory cytokine synthesis. We have shown previously that significantly lower numbers of EHEC 05 and 0111 efa-1 mutants are shed in feces following experimental infection in calves and that these mutants exhibit reduced adherence to intestinal epithelia compared with isogenic wild-type strains. E. coli O157:H7 strains lack efa-1 but encode a homolog on the pO157 plasmid (toxB/l7095) and contain a truncated version of the efa-1 gene (efa-1'/z4332 in O island 122 of the EDL933 chromosome). Here we report that E. coli O157:H7 toxB and efa-1' single and double mutants exhibit reduced adherence to cultured epithelial cells and show reduced expression and secretion of proteins encoded by the locus of enterocyte effacement (LEE), which plays a key role in the host-cell interactions of EHEC. The activity of LEE1, LEE4, and LEE5 promoters was not significantly altered in E. coli O157:H7 strains harboring toxB or efa-1' mutations, indicating that the effect on the expression of LEE-encoded secreted proteins occurs at a posttranscriptional level. Despite affecting type III secretion, mutation of toxB and efa-1' did not significantly affect the course of fecal shedding of E. coli O157:H7 following experimental inoculation of 10- to 14-day-old calves or 6-week-old sheep. Mutation of tir caused a significant reduction in fecal shedding of E. coli O157:H7 in calves, indicating that the formation of AE lesions is important for colonization of the bovine intestine.
Resumo:
An efflux system, CmeABC, in Campylobacter jejuni was previously described, and a second efflux system, CmeDEF, has now been identified. The substrates of CmeDEF include ampicillin, ethidium bromide, acridine, sodium dodecyl sulfate (SDS), deoxycholate, triclosan, and cetrimide, but not ciprofloxacin or erythromycin. C. jejuni NCTC11168 and two efflux pump knockout strains, cmeB::Kan(r) and cmeF::Kan(r), were exposed to 0.5 to 1 mu g of ciprofloxacin/ml in agar plates. All mutants arising from NCTC11168 were resistant to ciprofloxacin but not to other agents and contained a mutation resulting in the replacement of threonine 86 with isoleucine in the quinolone resistance-determining region of GyrA. Mutants with two distinct phenotypes were selected from the efflux pump knockout strains. Mutants with the first phenotype were resistant to ciprofloxacin only and had the same substitution within GyrA as the NCTC11168-derived mutants. Irrespective of the parent strain, mutants with the second phenotype were resistant to ciprofloxacin, chloramphenicol, tetracycline, ethidium bromide, acridine orange, and SDS and had no mutation in gyrA. These mutants expressed levels of the efflux pump genes cmeB and cmeF and the major outer membrane protein gene porA similar to those expressed by the respective parent strains. No mutations were detected in cmeF or cmeB. Accumulation assays revealed that the mutants accumulated lower concentrations of drug. These data suggest the involvement of a non-CmeB or -CmeF efflux pump or reduced uptake conferring multiple-antibiotic resistance, which can be selected after exposure to a fluoroquinolone.
Resumo:
We investigated the role of urban Holm Oak (Quercus ilex L.) trees as airborne metal accumulators and metals' environmental fate. Analyses confirmed Pb, Cd, Cu and Zn as main contaminants in Siena's urban environment; only Pb concentrations decreased significantly compared to earlier surveys. Additionally, we determined chemical composition of tree leaves, litter and topsoil (underneath/outside tree crown) in urban and extra-urban oak stands. Most notably, litter in urban samples collected outside the canopy had significantly lower concentrations of organic matter and higher concentrations of Pb, Cu, Cd and Zn than litter collected underneath the canopy. There was a greater metals' accumulation in topsoil, in samples collected under the tree canopy and especially near the trunk ('stemflow area'). Thus, in urban ecosystems the Holm Oak stands likely increase the soil capability to bind metals.
Resumo:
Particulate matter generated during the cooking process has been identified as one of the major problems of indoor air quality and indoor environmental health. Reliable assessment of exposure to cooking-generated particles requires accurate information of emission characteristics especially the size distribution. This study characterizes the volume/mass-based size distribution of the fume particles at the oil-heating stage for the typical Chinese-style cooking in a laboratory kitchen. A laser-diffraction size analyzer is applied to measure the volume frequency of fume particles ranged from 0.1 to 10 μm, which contribute to most mass proportion in PM2.5 and PM10. Measurements show that particle emissions have little dependence on the types of vegetable oil used but have a close relationship with the heating temperature. It is found that volume frequency of fume particles in the range of 1.0–4.0 μm accounts for nearly 100% of PM0.1–10 with the mode diameter 2.7 μm, median diameter 2.6 μm, Sauter mean diameter 3.0 μm, DeBroukere mean diameter 3.2 μm, and distribution span 0.48. Such information on emission characteristics obtained in this study can be possibly used to improve the assessment of indoor air quality due to PM0.1–10 in the kitchen and residential flat.