53 resultados para multi-platform development
Resumo:
Collaborative software is usually thought of as providing audio-video conferencing services, application/desktop sharing, and access to large content repositories. However mobile device usage is characterized by users carrying out short and intermittent tasks sometimes referred to as 'micro-tasking'. Micro-collaborations are not well supported by traditional groupware systems and the work in this paper seeks out to address this. Mico is a system that provides a set of application level peer-to-peer services for the ad-hoc formation and facilitation of collaborative groups across a diverse mobile device domain. The system builds on the Java ME bindings of the JXTA P2P protocols, and is designed with an approach to use the lowest common denominators that are required for collaboration between varying degrees of mobile device capability. To demonstrate how our platform facilitates application development, we built an exemplary set of demonstration applications and include code examples here to illustrate the ease and speed afforded when developing collaborative software with Mico.
Resumo:
The UK construction industry is in the process of trying to adopt a new culture based on the large-scale take up of innovative practices. Through the Demonstration Project process many organizations are implementing changed practices and learning from the experiences of others. This is probably the largest experiment in innovation in any industry in recent times. The long-term success will be measured by the effectiveness of embedding the new practices in the organization. As yet there is no recognized approach to measuring the receptivity of the organization to the innovation process as an indication of the likelihood of long-term development. The development of an appropriate approach is described here. Existing approaches to the measurement of the take up of innovation were reviewed and where appropriate used as the base for the development of a questionnaire. The questionnaire could be applicable to multi-organizational construction project situations such that the output could determine an individual organization's innovative practices via an innovation scorecard, a project team's approach or it could be used to survey a wide cross-section of the industry.
Resumo:
In this paper we present the novel concepts incorporated in a planetary surface exploration rover design that is currently under development. The Multitasking Rover (MTR) aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability. The rover system has enhanced mobility characteristics. It operates in conjunction with Science Packs (SPs) and Tool Packs (TPs)-modules attached to the main frame of the rover, which are either special tools or science instruments and alter the operation capabilities of the system.
Resumo:
Mobile robots provide a versatile platform for research, however they can also provide an interesting educational platform for public exhibition at museums. In general museums require exhibits that are both eye catching and exciting to the public whilst requiring a minimum of maintenance time from museum technicians. In many cases it is simply not possible to continuously change batteries and some method of supplying continous power is required. A powered flooring system is described that is capable of providing power continuously to a group of robots. Three different museum exhibit applications are described. All three robot exhibits are of a similar basic design although the exhibits are very different in appearance and behaviour. The durability and versatility of the robots also makes them extremely good candidates for long duration experiments such as those required by evolutionary robotics.
Resumo:
The International Conference (series) on Disability, Virtual Reality and Associated Technologies (ICDVRAT) this year held its sixth biennial conference, celebrating ten years of research and development in this field. A total of 220 papers have been presented at the first six conferences, addressing potential, development, exploration and examination of how these technologies can be applied in disabilities research and practice. The research community is broad and multi-disciplined, comprising a variety of scientific and medical researchers, rehabilitation therapists, educators and practitioners. Likewise, technologies, their applications and target user populations are also broad, ranging from sensors positioned on real world objects to fully immersive interactive simulated environments. A common factor is the desire to identify what the technologies have to offer and how they can provide added value to existing methods of assessment, rehabilitation and support for individuals with disabilities. This paper presents a brief review of the first decade of research and development in the ICDVRAT community, defining technologies, applications and target user populations served.
Resumo:
The development of a set of multi-channel dichroics which includes a 6 channel dichroic operating over the wavelength region from 0.3 to 52µm is described. In order to achieve the optimum performance, the optical constants of PbTe, Ge and CdTe coatings in the strongly absorptive region have been determined by use of a new iterative method using normal incidence reflectance measurement of the multilayer together with initial values of energy gap Eg and infinite refractive index n for the semiconductor model. The design and manufacture of the dichroics is discussed and the final results are presented.
Resumo:
Recently a substantial amount of research has been done in the field of dextrous manipulation and hand manoeuvres. The main concern has been how to control robot hands so that they can execute manipulation tasks with the same dexterity and intuition as human hands. This paper surveys multi-fingered robot hand research and development topics which include robot hand design, object force distribution and control, grip transform, grasp stability and its synthesis, grasp stiffness and compliance motion and robot arm-hand coordination. Three main topics are presented in this article. The first is an introduction to the subject. The second concentrates on examples of mechanical manipulators used in research and the methods employed to control them. The third presents work which has been done on the field of object manipulation.
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds) can reach chemical lifetimes of many hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (< 10(-10) cm(2) s(-1)). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas–particle interactions (P¨oschl et al., 5 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface 10 concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory stud15 ies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical lifetimes of 20 multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (10−10 cm2 s−1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB 25 as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.
Resumo:
This paper presents a review of the design and development of the Yorick series of active stereo camera platforms and their integration into real-time closed loop active vision systems, whose applications span surveillance, navigation of autonomously guided vehicles (AGVs), and inspection tasks for teleoperation, including immersive visual telepresence. The mechatronic approach adopted for the design of the first system, including head/eye platform, local controller, vision engine, gaze controller and system integration, proved to be very successful. The design team comprised researchers with experience in parallel computing, robot control, mechanical design and machine vision. The success of the project has generated sufficient interest to sanction a number of revisions of the original head design, including the design of a lightweight compact head for use on a robot arm, and the further development of a robot head to look specifically at increasing visual resolution for visual telepresence. The controller and vision processing engines have also been upgraded, to include the control of robot heads on mobile platforms and control of vergence through tracking of an operator's eye movement. This paper details the hardware development of the different active vision/telepresence systems.
Resumo:
Livestock keepers comprise 2/3rds of the 2.8 billion households living on less than two dollars per day. However, as a group they tend to be marginalised and excluded from formal service provision, particularly in relation to animal health. Therefore, the following paper describes the development of the Livestock Guru, a multi-media learning programme created to meet the knowledge needs of poor livestock keepers in Tamil Nadu, India. The findings from the study illustrate the importance of both appropriate visuals, voice-overs but also the need for addressing issues in the environment in which learning will take place.
Resumo:
The following paper builds on ongoing discussions over the spatial and territorial turns in planning, as it relates to the dynamics of evidence-based planning and knowledge production in the policy process. It brings this knowledge perspective to the organizational and institutional dynamics of transformational challenges implicit in the recent enlargement of the EU. Thus it explores the development of new spatial ideas and planning approaches, and their potential to shape or ‘frame’ spatial policy through the formulation of new institutional arrangements and the de-institutionalization of others. That is, how knowledge is created, contested, mobilized and controlled across governance architectures or territorial knowledge channels. In so doing, the paper elaborates and discusses a theoretical framework through which the interplay of knowledge and policymaking can be conceptualized and analyzed.
Resumo:
Increased penetration of generation and decentralised control are considered to be feasible and effective solution for reducing cost and emissions and hence efficiency associated with power generation and distribution. Distributed generation in combination with the multi-agent technology are perfect candidates for this solution. Pro-active and autonomous nature of multi-agent systems can provide an effective platform for decentralised control whilst improving reliability and flexibility of the grid.