25 resultados para mission statement reviewed
Resumo:
We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010.
Resumo:
The sparse historical and anthropological research on romantic love in Africa south of the Sahara gives the impression that the phenomenon may merely be of marginal importance. Instead, the reasons for the apparent impossibility to write about love in Africa are largely rooted in its epistemology: Western stereotypes of a continent inhabited by tribal, atavistic people, barely modernised by colonialism or touched by globalisation which introduced romantic love to the world region have been in part responsible for this dearth of academic knowledge, as have recent identity politics and practical concerns that focused research in the area on sexuality. Here, the main argument is that the almost complete silence about love in Africa may be addressed by applying a more inclusive concept of love that embraces ideologies and practices hitherto neglected, such as polygyny, and that expands the one which has been developed by historians of the medieval and early modern periods. This, in turn, enriches the research on the history of love in Western societies.
Resumo:
Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun’s planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus’ atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency’s call for science themes for its large-class mission programme in 2013.
Resumo:
The magnetometer is a key instrument to the Solar Orbiter mission. The magnetic field is a fundamental parameter in any plasma: a precise and accurate measurement of the field is essential for understanding almost all aspects of plasma dynamics such as shocks and stream-stream interactions. Many of Solar Orbiter’s mission goals are focussed around the link between the Sun and space. A combination of in situ measurements by the magnetometer, remote measurements of solar magnetic fields and global modelling is required to determine this link and hence how the Sun affects interplanetary space. The magnetic field is typically one of the most precisely measured plasma parameters and is therefore the most commonly used measurement for studies of waves, turbulence and other small scale phenomena. It is also related to the coronal magnetic field which cannot be measured directly. Accurate knowledge of the magnetic field is essential for the calculation of fundamental plasma parameters such as the plasma beta, Alfvén speed and gyroperiod. We describe here the objectives and context of magnetic field measurements on Solar Orbiter and an instrument that fulfils those objectives as defined by the scientific requirements for the mission.
Resumo:
The proposed HI-LITE Explorer will investigate the global ion outflow from the high-latitude ionosphere, its relationship to auroral features, and the consequences of this outflow on magnetospheric processes. The unique nature of the HI-LITE Explorer images will allow temporal and spatial features of the global ion outflow to be determined. The mission's scientific motivation comes from the fundamental role high-latitude ionospheric ions play in the dynamics of the solar wind driven magnetospheric-ionospheric system. These outflows are a major source of plasma for the magnetosphere and it is believed they play an important role in the triggering of substorms. In addition this paper describes the HI-LITE spacecraft and instruments.
Resumo:
Intuition is an important and under-researched concept in information systems. Prior exploratory research has shown that that there is potential to characterize the use of intuition in academic information systems research. This paper extends this research to all of the available issues of two leading IS journals with the aim of reaching an approximation of theoretical saturation. Specifically, the entire text of MISQ and ISR was reviewed for the years 1990 through 2009 using searchable PDF versions of these publications. All references to intuition were coded on a basis consistent with Grounded Theory, interpreted as a gestalt and represented as a mind-map. In the period 1990-2009, 681 incidents of the use of "intuition", and related terms were found in the articles reviewed, representing a greater range of codes than prior research. In addition, codes were assigned to all issues of MIS Quarterly from commencement of publication to the end of the 2012 publication year to support the conjecture that coding saturation has been approximated. The most prominent use of the term of "intuition" was coded as "Intuition as Authority" in which intuition was used to validate a statement, research objective or a finding; representing approximately 34 per cent of codes assigned. In research articles where mathematical analysis was presented, researchers not infrequently commented on the degree to which a mathematical formulation was "intuitive"; this was the second most common coding representing approximately 16 per cent of the codes. The possibly most impactful use of the term "intuition" was "Intuition as Outcome", representing approximately 7 per cent of all coding, which characterized research results as adding to the intuitive understanding of a research topic or phenomena.This research aims to contribute to a greater theoretical understanding of the use of intuition in academic IS research publications. It provides potential benefits to practitioners by providing insight into the use of intuition in IS management, for example, emphasizing the emerging importance of "intuitive technology". Research directions include the creation of reflective and/or formative constructs for intuition in information systems research and the expansion of this novel research method to additional IS academic publications and topics.
Resumo:
This review provides an overview of the main scientific outputs of a network (Action) supported by the European Cooperation in Science and Technology (COST) in the field of animal science, namely the COST Action Feed for Health (FA0802). The main aims of the COST Action Feed for Health (FA0802) were: to develop an integrated and collaborative network of research groups that focuses on the roles of feed and animal nutrition in improving animal wellbeing and also the quality, safety and wholesomeness of human foods of animal origin; to examine the consumer concerns and perceptions as regards livestock production systems. The COST Action Feed for Health has addressed these scientific topics during the last four years. From a practical point of view three main scientific fields of achievement can be identified: feed and animal nutrition; food of animal origin quality and functionality and consumers’ perceptions. Finally, the present paper has the scope to provide new ideas and solutions to a range of issues associated with the modern livestock production system.
Resumo:
An expert panel was convened in October 2013 by the International Scientific Association for Probiotics and Prebiotics (ISAPP) to discuss the field of probiotics. It is now 13 years since the definition of probiotics and 12 years after guidelines were published for regulators, scientists and industry by the Food and Agriculture Organization of the United Nations and the WHO (FAO/WHO). The FAO/WHO definition of a probiotic—“live microorganisms which when administered in adequate amounts confer a health benefit on the host”—was reinforced as relevant and sufficiently accommodating for current and anticipated applications. However, inconsistencies between the FAO/WHO Expert Consultation Report and the FAO/WHO Guidelines were clarified to take into account advances in science and applications. A more precise use of the term 'probiotic' will be useful to guide clinicians and consumers in differentiating the diverse products on the market. This document represents the conclusions of the ISAPP consensus meeting on the appropriate use and scope of the term probiotic.
Resumo:
Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10% for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out