24 resultados para methicillin susceptibility
Resumo:
OBJECTIVE: To determine whether the peroxisome proliferator-activated receptor (PPAR)-gamma Pro12ala polymorphism modulates susceptibility to diabetes in South Asians. RESEARCH DESIGN AND METHODS: South Asians (n = 697) and Caucasians (n = 457) living in Dallas/Forth Worth, Texas, and South Asians living in Chennai, India (n = 1,619), were enrolled for this study. PPAR-gamma Pro12Ala was determined using restriction fragment-length polymorphism. Insulin responsiveness to an oral glucose tolerance test (OGTT) was measured in nondiabetic subjects. RESULTS: The Caucasian diabetic subjects had significantly lower prevalence of PPAR-gamma 12Ala when compared with the Caucasian nondiabetic subjects (20 vs. 9%, P = 0.006). However, there were no significant differences between diabetic and nondiabetic subjects with reference to the Pro12Ala polymorphism among the South Asians living in Dallas (20 vs. 23%) and in India (19 vs. 19.3%). Although Caucasians carrying PPAR-gamma Pro12Ala had lower plasma insulin levels at 2 h of OGTT than the wild-type (Pro/Pro) carriers (76 +/- 68 and 54 +/- 33 microU/ml, respectively, P = 0.01), no differences in either fasting or 2-h plasma insulin concentrations were found between South Asians carrying the PPAR-gamma Pro12Ala polymorphism and those with the wild-type genotype at either Chennai or Dallas. CONCLUSIONS: Although further replication studies are necessary to test the validity of the described genotype-phenotype relationship, our study supports the hypothesis that the PPAR-gamma Pro12Ala polymorphism is protective against diabetes in Caucasians but not in South Asians.
Resumo:
Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organism’s phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens.
Resumo:
We used a laboratory study to compare the performance of rose-grain aphid, Metopolophium dirhodum(Walker)(Hemiptera:Aphididae),onthewheatcultivars‘Huntsman’(susceptible)and‘Rapier’ (partiallyresistant)inbothlowdensity(uncrowded)andhighdensity(crowded)coloniesandexamined the consequences for aphid susceptibility to malathion. Adult apterae that developed on Rapier wheat had their mean relative growth rate (MRGR) reduced by 6 and 9% under uncrowded and crowded conditions, respectively, whereas the crowding treatment reduced MRGR by 3%, but only in Rapier aphids. Rapier resistance also reduced adult dry weight by 13 and 14% under crowded and uncrowded conditions, respectively, whereas crowding reduced it by 34 and 35% in Rapier and Huntsman aphids, respectively. Development on Rapier substantially reduced the topical LC50 of malathion by 37.8 and 34.8% under crowded and uncrowded conditions, suggesting that plant antibiosis increased malathion susceptibility. By comparison, crowding only reduced the LC50 by 29.5 and 26.0% on Huntsman and Rapier. The LD50 data showed that reductions on aphid body size on Rapier and through crowding did not fully explain the differences in LC50. This was particularly in the values for crowded aphids that were actually 80% higher than for uncrowded ones. Thi sapparent tolerance of crowded aphids, however, may partly be due to loss of insecticide from small aphids at dosing. Evidence of synergy between plant resistance and insecticide susceptibility raisest he possibility of using reduced concentrations of pesticides to control aphids on resistant crop cultivars, with diminished impacts on non-target and beneficial species important in integrated pest management(IPM)program
Resumo:
The tolerance of Callosobruchus maculatus from different geographical locations reared on two cowpea varieties, pale brown Ife Brown (IFBV) and dark brown IAR48 (IAR48V), to seed powder of Piper guineense (Schum and Thonn) was investigated. C. maculatus populations were collected from nine different locations across Osun state in the South Western part of Nigeria. The main and interactive effects of cowpea variety, population origin and dose on C. maculatus tolerance to P. guineense were explored. It was observed that bruchids that emerged from IAR48V had greater tolerance of P. guineense than bruchids reared on IFBV. There were significant effects (P < 0.001) of cowpea variety, population and dose, and significant interactions among these factors (except variety � dose, P > 0.05) on the response of bruchids to P. guineense. When reared on IAR48V, bruchid populations from the North-Eastern part of the state show greater tolerance to P. guineense than their counterparts from the SoutheWest. This study underscores the importance of knowledge of the origin of the population and the cowpea variety on which C. maculatus developed when managing bruchids damage using P. guineense
Resumo:
Background—Increased production of reactive oxygen species (ROS) throughout the vascular wall is a feature of cardiovascular disease states, but therapeutic strategies remain limited by our incomplete understanding of the role and contribution of specific vascular cell ROS to disease pathogenesis. To investigate the specific role of endothelial cell (EC) ROS in the development of structural vascular disease, we generated a mouse model of endothelium-specific Nox2 overexpression and tested the susceptibility to aortic dissection after angiotensin II (Ang II) infusion. Methods and Results—A specific increase in endothelial ROS production in Nox2 transgenic mice was sufficient to cause Ang II–mediated aortic dissection, which was never observed in wild-type mice. Nox2 transgenic aortas had increased endothelial ROS production, endothelial vascular cell adhesion molecule-1 expression, matrix metalloproteinase activity, and CD45+ inflammatory cell infiltration. Conditioned media from Nox2 transgenic ECs induced greater Erk1/2 phosphorylation in vascular smooth muscle cells compared with wild-type controls through secreted cyclophilin A (CypA). Nox2 transgenic ECs (but not vascular smooth muscle cells) and aortas had greater secretion of CypA both at baseline and in response to Ang II stimulation. Knockdown of CypA in ECs abolished the increase in vascular smooth muscle cell Erk1/2 phosphorylation conferred by EC conditioned media, and preincubation with CypA augmented Ang II–induced vascular smooth muscle cell ROS production. Conclusions—These findings demonstrate a pivotal role for EC-derived ROS in the determination of the susceptibility of the aortic wall to Ang II–mediated aortic dissection. ROS-dependent CypA secretion by ECs is an important signaling mechanism through which EC ROS regulate susceptibility of structural components of the aortic wall to aortic dissection.
Resumo:
Background: The differential susceptibly hypothesis suggests that certain genetic variants moderate the effects of both negative and positive environments on mental health and may therefore be important predictors of response to psychological treatments. Nevertheless, the identification of such variants has so far been limited to preselected candidate genes. In this study we extended the differential susceptibility hypothesis from a candidate gene to a genome-wide approach to test whether a polygenic score of environmental sensitivity predicted response to Cognitive Behavioural Therapy (CBT) in children with anxiety disorders. Methods: We identified variants associated with environmental sensitivity using a novel method in which within-pair variability in emotional problems in 1026 monozygotic (MZ) twin pairs was examined as a function of the pairs’ genotype. We created a polygenic score of environmental sensitivity based on the whole-genome findings and tested the score as a moderator of parenting on emotional problems in 1,406 children and response to individual, group and brief parent-led CBT in 973 children with anxiety disorders. Results: The polygenic score significantly moderated the effects of parenting on emotional problems and the effects of treatment. Individuals with a high score responded significantly better to individual CBT than group CBT or brief parent-led CBT (remission rates: 70.9%, 55.5% and 41.6% respectively). Conclusions: Pending successful replication, our results should be considered exploratory. Nevertheless, if replicated, they suggest that individuals with the greatest environmental sensitivity may be more likely to develop emotional problems in adverse environments, but also benefit more from the most intensive types of treatment.
Resumo:
Experiments were conducted over two years to quantify the response of faba bean (Vicia faba L.) to heat stress. Potted winter faba bean plants (cv. Wizard) were exposed to temperature treatments (18/10; 22/14; 26/18; 30/22; 34/26°C day/night) for five days during floral development and anthesis. Developmental stages of all flowers were scored prior to stress, plants were grown in exclusion from insect pollinators to prevent pollen movement between flowers, and yield was harvested at an individual pod scale, enabling effects of heat stress to be investigated at a high resolution. Susceptibility to stress differed between floral stages, flowers were most affected during initial green-bud stages. Yield and pollen germination of flowers present before stress showed threshold relationships to stress, with lethal temperatures (t50) ~28°C and ~32°C, while whole plant yield showed a linear negative relationship to stress with high plasticity in yield allocation, such that yield lost at lower nodes was partially compensated at higher nodal positions. Faba bean has many beneficial attributes for sustainable modern cropping systems but these results suggest that yield will be limited by projected climate change, necessitating the development of heat tolerant cultivars, or improved resilience by other mechanisms such as earlier flowering times.
Resumo:
Proanthocyanidins (PAC) are a class of plant secondary metabolites commonly found in the diet that have shown potential to control gastrointestinal nematode infections. The anti-parasitic mechanism(s) of PAC remain obscure, however the protein-binding properties of PAC suggest that disturbance of key enzyme functions may be a potential mode of action. Glutathione-S-transferases (GSTs) are essential for parasite detoxification and have been investigated as drug and vaccine targets. Here, we show that purified PAC strongly inhibit the activity of both recombinant and native GSTs from the parasitic nematode Ascaris suum. As GSTs are involved in detoxifying xenobiotic substances within the parasite, we hypothesised that this inhibition may render parasites hyper-susceptible to anthelmintic drugs. Migration inhibition assays with A. suum larvae demonstrated that the potency of levamisole (LEV) and ivermectin (IVM) were significantly increased in the presence of PAC purified from pine bark (4.6-fold and 3.2-fold reduction in IC50 value for LEV and IVM, respectively). Synergy analysis revealed that the relationship between PAC and LEV appeared to be synergistic in nature, suggesting a specific enhancement of LEV activity, whilst the relationship between PAC and IVM was additive rather than synergistic, suggesting independent actions. Our results demonstrate that these common dietary compounds may increase the efficacy of synthetic anthelmintic drugs in vitro, and also suggest one possible mechanism for their well-known anti-parasitic activity.