65 resultados para metaphysical realism
Resumo:
The chapter focuses on the relationships between 'Reality TV' and other ‘realist’ forms and genres of television. This issue is connected to larger debates about ‘televisuality’, and the understanding of the distinctiveness of the medium. Television processes and worries over reality in all of its genres, so that realism becomes a particularly ambiguous term. One meaning focuses on the actual scenes, places and people are represented rather than imagined. A second meaning refers to television’s representation of recognisable and often contemporary experience. Another meaning of realism refers to the development of new and different forms to give access to the real. Furthermore, the establishment of category distinctions in television, such as between factual and fictional forms, or between drama and documentary, could be seen as increasingly problematic in contemporary television. Reality TV can thought of as the trying-out of forms and modes of address in one genre or form that are adopted from apparently different genres and forms, thus creating connection and distinction simultaneously. This chapter addresses these distinctions and ambiguities within Reality TV, using examples including One Born Every Minute and The Only Way is Essex.
Resumo:
This article considers the ways in which British youth telefantasy Misfits (E4, 2009–13) takes up and makes strange urban spaces familiar from social-realist narratives. Filmed on the sprawling East London estate, Thamesmead, the programme chronicles a group of young offenders who are given powers by a freak storm, turning them into ‘ASBO superheroes’. Misfits depends on its British urban landscapes for the assertion of its ‘authenticity’ within British youth television, using spaces and landscapes familiar from urban youth exploitation cinema and television's narratives of the underclass. After situating the series within existing cultural discourses and recent developments in social-realist representations, the article explores how Misfits disrupts what have become signifiers for the ‘real’ – the brutalism of housing estates, the grey of the concrete and sky – by making them strange, turning them into telefantasy. The series presents the estate as an uncanny place: the domestic, social-realist world shifted into a fantastical space by the storm. Through close analysis, this article explores how the familiar spaces become skewed and unsettling to match our protagonists' isolation, shifting bodies and scrambled sense of self.
Resumo:
We apply the Coexistence Approach (CoA) to reconstruct mean annual precipitation (MAP), mean annual temperature (MAT), mean temperature of thewarmestmonth (MTWA) and mean temperature of the coldest month (MTCO) at 44 pollen sites on the Qinghai–Tibetan Plateau. The modern climate ranges of the taxa are obtained (1) from county-level presence/absence data and (2) from data on the optimum and range of each taxon from Lu et al. (2011). The CoA based on the optimumand range data yields better predictions of observed climate parameters at the pollen sites than that based on the county-level data. The presence of arboreal pollen, most of which is derived fromoutside the region, distorts the reconstructions. More reliable reconstructions are obtained using only the non-arboreal component of the pollen assemblages. The root mean-squared error (RMSE) of the MAP reconstructions are smaller than the RMSE of MAT, MTWA and MTCO, suggesting that precipitation gradients are the most important control of vegetation distribution on the Qinghai–Tibetan Plateau. Our results show that CoA could be used to reconstruct past climates in this region, although in areas characterized by open vegetation the most reliable estimates will be obtained by excluding possible arboreal contaminants.
Resumo:
Contemporary US sitcom is at an interesting crossroads: it has received an increasing amount of scholarly attention (e.g. Mills 2009; Butler 2010; Newman and Levine 2012; Vermeulen and Whitfield 2013), which largely understands it as shifting towards the aesthetically and narratively complex. At the same time, in the post-broadcasting era, US networks are particularly struggling for their audience share. With the days of blockbuster successes like Must See TV’s Friends (NBC 1994-2004) a distant dream, recent US sitcoms are instead turning towards smaller, engaged audiences. Here, a cult sensibility of intertextual in-jokes, temporal and narrational experimentation (e.g. flashbacks and alternate realities) and self-reflexive performance styles have marked shows including Community (NBC 2009-2015), How I Met Your Mother (CBS 2005-2014), New Girl (Fox 2011-present) and 30 Rock (NBC 2006-2013). However, not much critical attention has so far been paid to how these developments in textual sensibility in contemporary US sitcom may be influenced by, and influencing, the use of transmedia storytelling practices, an increasingly significant industrial concern and rising scholarly field of enquiry (e.g. Jenkins 2006; Mittell 2015; Richards 2010; Scott 2010; Jenkins, Ford and Green 2013). This chapter investigates this mutual influence between sitcom and transmedia by taking as its case studies two network shows that encourage invested viewership through their use of transtexts, namely How I Met Your Mother (hereafter HIMHM) and New Girl (hereafter NG). As such, it will pay particular attention to the most transtextually visible character/actor from each show: HIMYM’s Barney Stinson, played by Neil Patrick Harris, and NG’s Schmidt, played by Max Greenfield. This chapter argues that these sitcoms do not simply have their particular textual sensibility and also (happen to) engage with transmedia practices, but that the two are mutually informing and defining. This chapter explores the relationships and interplay between sitcom aesthetics, narratives and transmedia storytelling (or industrial transtexts), focusing on the use of multiple delivery channels in order to disperse “integral elements of a fiction” (Jenkins, 2006 95-6), by official entities such as the broadcasting channels. The chapter pays due attention to the specific production contexts of both shows and how these inform their approaches to transtexts. This chapter’s conceptual framework will be particularly concerned with how issues of texture, the reality envelope and accepted imaginative realism, as well as performance and the actor’s input inform and illuminate contemporary sitcoms and transtexts, and will be the first scholarly research to do so. It will seek out points of connections between two (thus far) separate strands of scholarship and will move discussions on transtexts beyond the usual genre studied (i.e. science-fiction and fantasy), as well as make a contribution to the growing scholarship on contemporary sitcom by approaching it from a new critical angle. On the basis that transmedia scholarship stands to benefit from widening its customary genre choice (i.e. telefantasy) for its case studies and from making more use of in-depth close analysis in its engagement with transtexts, the chapter argues that notions of texture, accepted imaginative realism and the reality envelope, as well as performance and the actor’s input deserve to be paid more attention to within transtext-related scholarship.
Resumo:
Integrations of a fully-coupled climate model with and without flux adjustments in the equatorial oceans are performed under 2×CO2 conditions to explore in more detail the impact of increased greenhouse gas forcing on the monsoon-ENSO system. When flux adjustments are used to correct some systematic model biases, ENSO behaviour in the modelled future climate features distinct irregular and periodic (biennial) regimes. Comparison with the observed record yields some consistency with ENSO modes primarily based on air-sea interaction and those dependent on basinwide ocean wave dynamics. Simple theory is also used to draw analogies between the regimes and irregular (stochastically forced) and self-excited oscillations respectively. Periodic behaviour is also found in the Asian-Australian monsoon system, part of an overall biennial tendency of the model under these conditions related to strong monsoon forcing and increased coupling between the Indian and Pacific Oceans. The tropospheric biennial oscillation (TBO) thus serves as a useful descriptor for the coupled monsoon-ENSO system in this case. The presence of obvious regime changes in the monsoon-ENSO system on interdecadal timescales, when using flux adjustments, suggests there may be greater uncertainty in projections of future climate, although further modelling studies are required to confirm the realism and cause of such changes.
Resumo:
It has been shown previously that one member of the Met Office Hadley Centre single-parameter perturbed physics ensemble – the so-called "low entrainment parameter" member – has a much higher climate sensitivity than other individual parameter perturbations. Here we show that the concentration of stratospheric water vapour in this member is over three times higher than observations, and, more importantly for climate sensitivity, increases significantly when climate warms. The large surface temperature response of this ensemble member is more consistent with stratospheric humidity change, rather than upper tropospheric clouds as has been previously suggested. The direct relationship between the bias in the control state (elevated stratospheric humidity) and the cause of the high climate sensitivity (a further increase in stratospheric humidity) lends further doubt as to the realism of this particular integration. This, together with other evidence, lowers the likelihood that the climate system's physical sensitivity is significantly higher than the likely upper range quoted in the Intergovernmental Panel on Climate Change's Fourth Assessment Report.
Resumo:
A powerful way to test the realism of ocean general circulation models is to systematically compare observations of passive tracer concentration with model predictions. The general circulation models used in this way cannot resolve a full range of vigorous mesoscale activity (on length scales between 10–100 km). In the real ocean, however, this activity causes important variability in tracer fields. Thus, in order to rationally compare tracer observations with model predictions these unresolved fluctuations (the model variability error) must be estimated. We have analyzed this variability using an eddy‐resolving reduced‐gravity model in a simple midlatitude double‐gyre configuration. We find that the wave number spectrum of tracer variance is only weakly sensitive to the distribution of (large scale slowly varying) tracer sources and sinks. This suggests that a universal passive tracer spectrum may exist in the ocean. We estimate the spectral shape using high‐resolution measurements of potential temperature on an isopycnal in the upper northeast Atlantic Ocean, finding a slope near k −1.7 between 10 and 500 km. The typical magnitude of the variance is estimated by comparing tracer simulations using different resolutions. For CFC‐ and tritium‐type transient tracers the peak magnitude of the model variability saturation error may reach 0.20 for scales shorter than 100 km. This is of the same order as the time mean saturation itself and well over an order of magnitude greater than the instrumental uncertainty.
Resumo:
Arbuscular mycorrhizal (AM) fungi have a variety of effects on foliar-feeding insects, with the majority of these being positive, although reports of negative and null effects also exist. Virtually all previous experiments have used mobile insects confined in cages and have studied the effects of one, or at most two, species of mycorrhizae on one species of insect. The purpose of this study was to introduce a greater level of realism into insect-mycorrhizal experiments, by studying the responses of different insect feeding guilds to a variety of AM fungi. We conducted two experiments involving three species of relatively immobile insects (a leaf-mining and two seed-feeding flies) reared in natural conditions on a host (Leucanthemum vulgare). In a field study, natural levels of AM colonization were reduced, while in a phytometer trial, we experimentally colonized host plants with all possible combinations of three known mycorrhizal associates of L. vulgare. In general, AM fungi increased the stature (height and leaf number) and nitrogen content of plants. However, these effects changed through the season and were,dependent on the identity of the fungi in the root system. AM fungi increased host acceptance of all three insects and larval performance of the leaf miner, but these effects were also season- and AM species-dependent. We suggest that the mycorrhizal effect on the performance of the leaf miner is due to fungal-induced changes in host-plant nitrogen content, detected by the adult fly. However, variability in the effect was apparent, because not all AM species increased plant N content. Meanwhile, positive effects of mycorrhizae were found on flower number and flower size, and these appeared to result in enhanced infestation levels by the seed-feeding insects. The results show that AM fungi exhibit ecological specificity, in that different. species have different effects on host-plant growth and chemistry and the performance of foliar-feeding insects. Future studies need to conduct experiments that use ecologically realistic combinations of plants and fungi and allow insects to be reared in natural conditions.
Resumo:
The findings from a study measuring consumer acceptance of genetically modified (GM) foods are presented. The empirical data were collected in an experimental market, an approach used extensively in experimental economics for measuring the monetary value of goods. The approach has several advantages over standard approaches used in sensory and marketing research (e.g., surveys and focus groups) because of its non-hypothetical nature and the realism introduced by using real goods, real money, and market discipline. In each of three US locations, we elicited the monetary compensation consumers required to consume a GM food. Providing positive information about the benefits of GM food production, in some cases, reduced the level of monetary compensation demanded to consume the GM food. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Realistic medical simulation has great potential for augmenting or complimenting traditional medical training or surgery planning, and Virtual Reality (VR) is a key enabling technology for delivering this goal. Although, medical simulators are now widely used in medical institutions, the majority of them are still reliant on desktop monitor displays, and many are restricted in their modelling capability to minimally invasive or endoscopic surgery scenarios. Whilst useful, such models lack the realism and interaction of the operating theatre. In this paper, we describe how we are advancing the technology by simulating open surgery procedures in an Immersive Projection Display CAVE environment thereby enabling medical practitioners to interact with their virtual patients in a more realistic manner.
Resumo:
This paper seeks to illustrate the point that physical inconsistencies between thermodynamics and dynamics usually introduce nonconservative production/destruction terms in the local total energy balance equation in numerical ocean general circulation models (OGCMs). Such terms potentially give rise to undesirable forces and/or diabatic terms in the momentum and thermodynamic equations, respectively, which could explain some of the observed errors in simulated ocean currents and water masses. In this paper, a theoretical framework is developed to provide a practical method to determine such nonconservative terms, which is illustrated in the context of a relatively simple form of the hydrostatic Boussinesq primitive equation used in early versions of OGCMs, for which at least four main potential sources of energy nonconservation are identified; they arise from: (1) the “hanging” kinetic energy dissipation term; (2) assuming potential or conservative temperature to be a conservative quantity; (3) the interaction of the Boussinesq approximation with the parameterizations of turbulent mixing of temperature and salinity; (4) some adiabatic compressibility effects due to the Boussinesq approximation. In practice, OGCMs also possess spurious numerical energy sources and sinks, but they are not explicitly addressed here. Apart from (1), the identified nonconservative energy sources/sinks are not sign definite, allowing for possible widespread cancellation when integrated globally. Locally, however, these terms may be of the same order of magnitude as actual energy conversion terms thought to occur in the oceans. Although the actual impact of these nonconservative energy terms on the overall accuracy and physical realism of the oceans is difficult to ascertain, an important issue is whether they could impact on transient simulations, and on the transition toward different circulation regimes associated with a significant reorganization of the different energy reservoirs. Some possible solutions for improvement are examined. It is thus found that the term (2) can be substantially reduced by at least one order of magnitude by using conservative temperature instead of potential temperature. Using the anelastic approximation, however, which was initially thought as a possible way to greatly improve the accuracy of the energy budget, would only marginally reduce the term (4) with no impact on the terms (1), (2) and (3).
Resumo:
There is remarkable agreement in expectations today for vastly improved ocean data management a decade from now -- capabilities that will help to bring significant benefits to ocean research and to society. Advancing data management to such a degree, however, will require cultural and policy changes that are slow to effect. The technological foundations upon which data management systems are built are certain to continue advancing rapidly in parallel. These considerations argue for adopting attitudes of pragmatism and realism when planning data management strategies. In this paper we adopt those attitudes as we outline opportunities for progress in ocean data management. We begin with a synopsis of expectations for integrated ocean data management a decade from now. We discuss factors that should be considered by those evaluating candidate “standards”. We highlight challenges and opportunities in a number of technical areas, including “Web 2.0” applications, data modeling, data discovery and metadata, real-time operational data, archival of data, biological data management and satellite data management. We discuss the importance of investments in the development of software toolkits to accelerate progress. We conclude the paper by recommending a few specific, short term targets for implementation, that we believe to be both significant and achievable, and calling for action by community leadership to effect these advancements.
Resumo:
An analysis of two paired moments, both involving bicycle rides, which enables a discussion of the relationships which the film establishes formally between these moments (and other elements of the film) and establishes the parallel between these structures and the film's interest in exploring coincidences, and seeking out a range of economic, political and metaphysical relationships. It explores the way the film dramatises philosophical debates through action.