31 resultados para melt extrusion
Resumo:
Background: Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results: We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions: Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.
Resumo:
Lava flows can produce changes in topography on the order of 10s-100s of metres. A knowledge of the resulting volume change provides evidence about the dynamics of an eruption. We present a method to measure topographic changes from the differential InSAR phase delays caused by the height differences between the current topography and a Digital Elevation Model (DEM). This does not require a pre-event SAR image, so it does not rely on interferometric phase remaining coherent during eruption and emplacement. Synthetic tests predicts that we can estimate lava thickness of as little as �9 m, given a minimum of 5 interferograms with suitably large orbital baseine separations. In the case of continuous motion, such as lava flow subsidence, we invert interferometric phase simultaneously for topographic change and displacement. We demonstrate the method using data from Santiaguito volcano, Guatemala, and measure increases in lava thickness of up to 140 m between 2000 and 2009, largely associated with activity between 2000 and 2005. We find a mean extrusion rate of 0.43 +/- 0.06 m3/s, which lies within the error bounds of the longer term extrusion rate between 1922-2000. The thickest and youngest parts of the flow deposit were shown to be subsiding at an average rate of �-6 cm/yr. This is the first time that flow thickness and subsidence have been measured simultaneously. We expect this method to be suitable for measurment of landslides and other mass flow deposits as well as lava flows.
Resumo:
[1] During the Northern Hemisphere summer, absorbed solar radiation melts snow and the upper surface of Arctic sea ice to generate meltwater that accumulates in ponds. The melt ponds reduce the albedo of the sea ice cover during the melting season, with a significant impact on the heat and mass budget of the sea ice and the upper ocean. We have developed a model, designed to be suitable for inclusion into a global circulation model (GCM), which simulates the formation and evolution of the melt pond cover. In order to be compatible with existing GCM sea ice models, our melt pond model builds upon the existing theory of the evolution of the sea ice thickness distribution. Since this theory does not describe the topography of the ice cover, which is crucial to determining the location, extent, and depth of individual ponds, we have needed to introduce some assumptions. We describe our model, present calculations and a sensitivity analysis, and discuss our results.
Resumo:
1] We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds, vertical seepage, and horizontal permeability. The model is initialized with surface topographies derived from laser altimetry corresponding to first-year sea ice and multiyear sea ice. We predict that there are large differences in the depth of melt ponds and the area of coverage between the two types of ice. We also find that the vertical seepage rate and the melt rate of unponded ice are important in determining the total surface ablation and area covered by melt ponds.
Resumo:
A one-dimensional, thermodynamic, and radiative model of a melt pond on sea ice is presented that explicitly treats the melt pond as an extra phase. A two-stream radiation model, which allows albedo to be determined from bulk optical properties, and a parameterization of the summertime evolution of optical properties, is used. Heat transport within the sea ice is described using an equation describing heat transport in a mushy layer of a binary alloy (salt water). The model is tested by comparison of numerical simulations with SHEBA data and previous modeling. The presence of melt ponds on the sea ice surface is demonstrated to have a significant effect on the heat and mass balance. Sensitivity tests indicate that the maximum melt pond depth is highly sensitive to optical parameters and drainage. INDEX TERMS: 4207 Oceanography: General: Arctic and Antarctic oceanography; 4255 Oceanography: General: Numerical modeling; 4299 Oceanography: General: General or miscellaneous; KEYWORDS: sea ice, melt pond, albedo, Arctic Ocean, radiation model, thermodynamic
Resumo:
We present a mathematical model describing the inward solidification of a slab, a circular cylinder and a sphere of binary melt kept below its equilibrium freezing temperature. The thermal and physical properties of the melt and solid are assumed to be identical. An asymptotic method, valid in the limit of large Stefan number is used to decompose the moving boundary problem for a pure substance into a hierarchy of fixed-domain diffusion problems. Approximate, analytical solutions are derived for the inward solidification of a slab and a sphere of a binary melt which are compared with numerical solutions of the unapproximated system. The solutions are found to agree within the appropriate asymptotic regime of large Stefan number and small time. Numerical solutions are used to demonstrate the dependence of the solidification process upon the level of impurity and other parameters. We conclude with a discussion of the solutions obtained, their stability and possible extensions and refinements of our study.
Resumo:
The area of Arctic September sea ice has diminished from about 7 million km2 in the 1990s to less than 5 million km2 in five of the past seven years, with a record minimum of 3.6 million km2 in 2012 (ref. 1). The strength of this decrease is greater than expected by the scientific community, the reasons for this are not fully understood, and its simulation is an on-going challenge for existing climate models2, 3. With growing Arctic marine activity there is an urgent demand for forecasting Arctic summer sea ice4. Previous attempts at seasonal forecasts of ice extent were of limited skill5, 6, 7, 8, 9. However, here we show that the Arctic sea-ice minimum can be accurately forecasted from melt-pond area in spring. We find a strong correlation between the spring pond fraction and September sea-ice extent. This is explained by a positive feedback mechanism: more ponds reduce the albedo; a lower albedo causes more melting; more melting increases pond fraction. Our results help explain the acceleration of Arctic sea-ice decrease during the past decade. The inclusion of our new melt-pond model10 promises to improve the skill of future forecast and climate models in Arctic regions and beyond.
Resumo:
Blends of PEEK with macrocyclic thioether-ketones show initial melt-viscosities reduced by more than an order of magnitude relative to the polymer itself, enabling more facile processing and fabrication. On raising the temperature of the melt, however, the macrocycle undergoes spontaneous, entropically-driven ring-opening polymerization (ED-ROP), so that the properties of the final polymer should not, in principle, be compromised by the presence of low-MW macrocyclic material.
Resumo:
BACKGROUND: Mealybugs (Hemiptera: Coccoidea: Pseudococcidae) are key vectors of badnaviruses, including Cacao Swollen Shoot Virus (CSSV) the most damaging virus affecting cacao (Theobroma cacao L.). The effectiveness of mealybugs as virus vectors is species dependent and it is therefore vital that CSSV resistance breeding programmes in cacao incorporate accurate mealybug identification. In this work the efficacy of a CO1-based DNA barcoding approach to species identification was evaluated by screening a range of mealybugs collected from cacao in seven countries. RESULTS: Morphologically similar adult females were characterised by scanning electron microscopy and then, following DNA extraction, were screened with CO1 barcoding markers. A high degree of CO1 sequence homology was observed for all 11 individual haplotypes including those accessions from distinct geographical regions. This has allowed for the design of a High Resolution Melt (HRM) assay capable of rapid identification of the commonly encountered mealybug pests of cacao. CONCLUSIONS: HRM Analysis (HRMA) readily differentiated between mealybug pests of cacao that can not necessarily be identified by conventional morphological analysis. This new approach, therefore, has potential to facilitate breeding for resistance to CSSV and other mealybug transmitted diseases.
Resumo:
Blending with a hydrogen-bonding supramolecular polymer is shown to be a successful novel strategy to induce microphase-separation in the melt of a Pluronic polyether block copolymer. The supramolecular polymer is a polybutadiene derivative with urea–urethane end caps. Microphase separation is analysed using small-angle X-ray scattering and its influence on the macroscopic rheological properties is analysed. FTIR spectroscopy provides a detailed picture of the inter-molecular interactions between the polymer chains that induces conformational changes leading to microphase separation.
Resumo:
We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2 h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid.
Resumo:
The Arctic sea ice retreat has accelerated over the last decade. The negative trend is largest in summer, but substantial interannual variability still remains. Here we explore observed atmospheric conditions and feedback mechanisms during summer months of anomalous sea ice melt in the Arctic. Compositing months of anomalous low and high sea ice melt over 1979–2013, we find distinct patterns in atmospheric circulation, precipitation, radiation, and temperature. Compared to summer months of anomalous low sea ice melt, high melt months are characterized by anomalous high sea level pressure in the Arctic (up to 7 hPa), with a corresponding tendency of storms to track on a more zonal path. As a result, the Arctic receives less precipitation overall and 39% less snowfall. This lowers the albedo of the region and reduces the negative feedback the snowfall provides for the sea ice. With an anticyclonic tendency, 12 W/m2 more incoming shortwave radiation reaches the surface in the start of the season. The melting sea ice in turn promotes cloud development in the marginal ice zones and enhances downwelling longwave radiation at the surface toward the end of the season. A positive cloud feedback emerges. In midlatitudes, the more zonally tracking cyclones give stormier, cloudier, wetter, and cooler summers in most of northern Europe and around the Sea of Okhotsk. Farther south, the region from the Mediterranean Sea to East Asia experiences significant surface warming (up to 2.4◦C), possibly linked to changes in the jet stream.
Resumo:
The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.
Resumo:
Introducing a parameterization of the interactions between wind-driven snow depth changes and melt pond evolution allows us to improve large scale models. In this paper we have implemented an explicit melt pond scheme and, for the first time, a wind dependant snow redistribution model and new snow thermophysics into a coupled ocean–sea ice model. The comparison of long-term mean statistics of melt pond fractions against observations demonstrates realistic melt pond cover on average over Arctic sea ice, but a clear underestimation of the pond coverage on the multi-year ice (MYI) of the western Arctic Ocean. The latter shortcoming originates from the concealing effect of persistent snow on forming ponds, impeding their growth. Analyzing a second simulation with intensified snow drift enables the identification of two distinct modes of sensitivity in the melt pond formation process. First, the larger proportion of wind-transported snow that is lost in leads directly curtails the late spring snow volume on sea ice and facilitates the early development of melt ponds on MYI. In contrast, a combination of higher air temperatures and thinner snow prior to the onset of melting sometimes make the snow cover switch to a regime where it melts entirely and rapidly. In the latter situation, seemingly more frequent on first-year ice (FYI), a smaller snow volume directly relates to a reduced melt pond cover. Notwithstanding, changes in snow and water accumulation on seasonal sea ice is naturally limited, which lessens the impacts of wind-blown snow redistribution on FYI, as compared to those on MYI. At the basin scale, the overall increased melt pond cover results in decreased ice volume via the ice-albedo feedback in summer, which is experienced almost exclusively by MYI.