85 resultados para mega-event
Resumo:
Identifying 2 target stimuli in a rapid stream of visual symbols is much easier if the 2nd target appears immediately after the 1st target (i.e., at Lag 1) than if distractor stimuli intervene. As this phenomenon comes with a strong tendency to confuse the order of the targets, it seems to be due to the integration of both targets into the same attentional episode or object file. The authors investigated the degree to which people can control the temporal extension of their (episodic) integration windows by manipulating the expectations participants had with regard to the time available for target processing. As predicted, expecting more time to process increased the number of order confusions at Lag 1. This was true for between-subjects and within-subjects (trial-to-trial) manipulations, suggesting that integration windows can be adapted actively and rather quickly.
Resumo:
We investigated whether it is possible to control the temporal window of attention used to rapidly integrate visual information. To study the underlying neural mechanisms, we recorded ERPs in an attentional blink task, known to elicit Lag-1 sparing. Lag-1 sparing fosters joint integration of the two targets, evidenced by increased order errors. Short versus long integration windows were induced by showing participants mostly fast or slow stimuli. Participants expecting slow speed used a longer integration window, increasing joint integration. Difference waves showed an early (200 ms post-T2) negative and a late positive modulation (390 ms) in the fast group, but not in the slow group. The modulations suggest the creation of a separate event for T2, which is not needed in the slow group, where targets were often jointly integrated. This suggests that attention can be guided by global expectations of presentation speed within tens of milliseconds.
Resumo:
Abstract. Different types of mental activity are utilised as an input in Brain-Computer Interface (BCI) systems. One such activity type is based on Event-Related Potentials (ERPs). The characteristics of ERPs are not visible in single-trials, thus averaging over a number of trials is necessary before the signals become usable. An improvement in ERP-based BCI operation and system usability could be obtained if the use of single-trial ERP data was possible. The method of Independent Component Analysis (ICA) can be utilised to separate single-trial recordings of ERP data into components that correspond to ERP characteristics, background electroencephalogram (EEG) activity and other components with non- cerebral origin. Choice of specific components and their use to reconstruct “denoised” single-trial data could improve the signal quality, thus allowing the successful use of single-trial data without the need for averaging. This paper assesses single-trial ERP signals reconstructed using a selection of estimated components from the application of ICA on the raw ERP data. Signal improvement is measured using Contrast-To-Noise measures. It was found that such analysis improves the signal quality in all single-trials.
Resumo:
This paper outlines a method for automatic artefact removal from multichannel recordings of event-related potentials (ERPs). The proposed method is based on, firstly, separation of the ERP recordings into independent components using the method of temporal decorrelation source separation (TDSEP). Secondly, the novel lagged auto-mutual information clustering (LAMIC) algorithm is used to cluster the estimated components, together with ocular reference signals, into clusters corresponding to cerebral and non-cerebral activity. Thirdly, the components in the cluster which contains the ocular reference signals are discarded. The remaining components are then recombined to reconstruct the clean ERPs.
Resumo:
This article discusses approaches to the interpretation and analysis an event that is poised between reality and performance. It focuses upon a real event witnessed by the author while driving out of Los Angeles, USA. A body hanging on a rope from a bridge some 25/30 feet above the freeway held up the traffic. The status of the body was unclear. Was it the corpse of a dead human being or a stuffed dummy, a simulation of a death? Was it is tragic accident or suicide or was it a stunt, a protest or a performance? Whether a real body or not, it was an event: it drew an audience, it took place in a defined public space bound by time and it disrupted everyday normality and the familiar. The article debates how approaches to performance can engage with a shocking event, such as the Hanging Man, and the frameworks of interpretation that can be brought to bear on it. The analysis takes account of the function of memory in reconstructing the event, and the paradigms of cultural knowledge that offered themselves as parallels, comparators or distinctions against which the experience could be measured, such as the incidents of self-immolation related to demonstrations against the Vietnam War, the protest by the Irish Hunger Strikers and the visual impact of Anthony Gormley’s 2007 work, 'Event Horizon'. Theoretical frameworks deriving from analytical approaches to performance, media representation and ethical dilemmas are evaluated as means to assimilate an indeterminate and challenging event, and the notion of what an ‘event’ may be is itself addressed.
Resumo:
We compare rain event size distributions derived from measurements in climatically different regions, which we find to be well approximated by power laws of similar exponents over broad ranges. Differences can be seen in the large-scale cutoffs of the distributions. Event duration distributions suggest that the scale-free aspects are related to the absence of characteristic scales in the meteorological mesoscale.
Resumo:
Various methods of assessment have been applied to the One Dimensional Time to Explosion (ODTX) apparatus and experiments with the aim of allowing an estimate of the comparative violence of the explosion event to be made. Non-mechanical methods used were a simple visual inspection, measuring the increase in the void volume of the anvils following an explosion and measuring the velocity of the sound produced by the explosion over 1 metre. Mechanical methods used included monitoring piezo-electric devices inserted in the frame of the machine and measuring the rotational velocity of a rotating bar placed on the top of the anvils after it had been displaced by the shock wave. This last method, which resembles original Hopkinson Bar experiments, seemed the easiest to apply and analyse, giving relative rankings of violence and the possibility of the calculation of a “detonation” pressure.