47 resultados para medial frontal cortex


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dyspnea is the major source of disability in chronic obstructive pulmonary disease (COPD). In COPD, environmental cues (e.g. the prospect of having to climb stairs) become associated with dyspnea, and may trigger dyspnea even before physical activity commences. We hypothesised that brain activation relating to such cues would be different between COPD patients and healthy controls, reflecting greater engagement of emotional mechanisms in patients. Methods: Using FMRI, we investigated brain responses to dyspnea-related word cues in 41 COPD patients and 40 healthy age-matched controls. We combined these findings with scores of self-report questionnaires thus linking the FMRI task with clinically relevant measures. This approach was adapted from studies in pain that enables identification of brain networks responsible for pain processing despite absence of a physical challenge. Results: COPD patients demonstrate activation in the medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC) which correlated with the visual analogue scale (VAS) response to word cues. This activity independently correlated with patient-reported questionnaires of depression, fatigue and dyspnea vigilance. Activation in the anterior insula, lateral prefrontal cortex (lPFC) and precuneus correlated with the VAS dyspnea scale but not the questionnaires. Conclusions: Our findings suggest that engagement of the brain's emotional circuitry is important for interpretation of dyspnea-related cues in COPD, and is influenced by depression, fatigue, and vigilance. A heightened response to salient cues is associated with increased symptom perception in chronic pain and asthma, and our findings suggest such mechanisms may be relevant in COPD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. METHOD: We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. RESULTS: Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. CONCLUSION: Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We recently demonstrated a functional relationship between fMRI responses within the amygdala and the medial prefrontal cortex based upon whether subjects interpreted surprised facial expressions positively or negatively. In the present fMRI study, we sought to assess amygdala-medial prefrontal cortex responsivity when the interpretations of surprised faces were determined by contextual experimental stimuli, rather than subjective judgment. Subjects passively viewed individual presentations of surprised faces preceded by either a negatively or positively valenced contextual sentence (e. g., She just found $500 vs. She just lost $500). Negative and positive sentences were carefully matched in terms of length, situations described, and arousal level. Negatively cued surprised faces produced greater ventral amygdala activation compared to positively cued surprised faces. Responses to negative versus positive sentences were greater within the ventrolateral prefrontal cortex, whereas responses to positive versus negative sentences were greater within the ventromedial prefrontal cortex. The present study demonstrates that amygdala response to surprised facial expressions can be modulated by negatively versus positively valenced verbal contextual information. Connectivity analyses identified candidate cortical-subcortical systems subserving this modulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the potential function of the system formed by connections between the medial prefrontal cortex and the dorsomedial striatum in aspects of attentional function in the rat. It has been reported previously that disconnection of the same corticostriatal circuit produced marked deficits in performance of a serial, choice reaction-time task while sparing the acquisition of an appetitive Pavlovian approach behaviour in an autoshaping task (Christakou et al., 2001). Here, we hypothesized that unilateral disruption of the same circuit would lead to hemispatial inattention, contrasting with the global attention deficit following complete disconnection of the system. Combined unilateral lesions of the medial prefrontal cortex (mPFC) and the medial caudate-putamen (mCPu) within the same hemisphere produced a severe and long-lasting contralesional neglect syndrome while sparing the acquisition of autoshaping. These results provide further evidence for the involvement of the medial prefrontal-dorsomedial striatal circuit in aspects of attentional function, as well as insight into the nature of neglect deficits following lesions at different levels within corticostriatal circuitry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This series of experiments investigated the role of a prefrontal cortical-dorsal striatal circuit in attention, using a continuous performance task of sustained and spatially divided visual attention. A unilateral excitotoxic lesion of the medial prefrontal cortex and a contralateral lesion of the medial caudate-putamen were used to "disconnect" the circuit. Control groups of rats with unilateral lesions of either structure were tested in the same task. Behavioral controls included testing the effects of the disconnection lesion on Pavlovian discriminated approach behavior. The disconnection lesion produced a significant reduction in the accuracy of performance in the attentional task but did not impair Pavlovian approach behavior or affect locomotor or motivational variables, providing evidence for the involvement of this medial prefrontal corticostriatal system in aspects of visual attentional function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using fMRI, we examined the neural correlates of maternal responsiveness. Ten healthy mothers viewed alternating blocks of video: (i) 40 s of their own infant; (ii) 20 s of a neutral video; (iii) 40 s of an unknown infant and (iv) 20 s of neutral video, repeated 4 times. Predominant BOLD signal change to the contrast of infants minus neutral stimulus occurred in bilateral visual processing regions BA minus neutral stimulus occurred in bilateral visual processing regions (BA 38), left amygdala and visual cortex (BA 19), and to the unknown infant minus own infant contrast in bilateral orbitofrontal cortex (BA 10,47) and medial prefrontal cortex (BA 8). These findings suggest that amygdala and temporal pole may be key sites in mediating a mother's response to her infant and reaffirms their importance in face emotion processing and social behaviour.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We frequently encounter conflicting emotion cues. This study examined how the neural response to emotional prosody differed in the presence of congruent and incongruent lexico-semantic cues. Two hypotheses were assessed: (i) decoding emotional prosody with conflicting lexico-semantic cues would activate brain regions associated with cognitive conflict (anterior cingulate and dorsolateral prefrontal cortex) or (ii) the increased attentional load of incongruent cues would modulate the activity of regions that decode emotional prosody (right lateral temporal cortex). While the participants indicated the emotion conveyed by prosody, functional magnetic resonance imaging data were acquired on a 3T scanner using blood oxygenation level-dependent contrast. Using SPM5, the response to congruent cues was contrasted with that to emotional prosody alone, as was the response to incongruent lexico-semantic cues (for the 'cognitive conflict' hypothesis). The right lateral temporal lobe region of interest analyses examined modulation of activity in this brain region between these two contrasts (for the 'prosody cortex' hypothesis). Dorsolateral prefrontal and anterior cingulate cortex activity was not observed, and neither was attentional modulation of activity in right lateral temporal cortex activity. However, decoding emotional prosody with incongruent lexico-semantic cues was strongly associated with left inferior frontal gyrus activity. This specialist form of conflict is therefore not processed by the brain using the same neural resources as non-affective cognitive conflict and neither can it be handled by associated sensory cortex alone. The recruitment of inferior frontal cortex may indicate increased semantic processing demands but other contributory functions of this region should be explored.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset-the attentional blink (AB). We provide an overview of recent neuroscientific studies devoted to analyze the neural processes underlying the AB and their temporal dynamics. The available evidence points to an attentional network involving temporal, right-parietal and frontal cortex, and suggests that the components of this neural network interact by means of synchronization and stimulus-induced desynchronization in the beta frequency range. We set up a neurocognitive scenario describing how the AB might emerge and why it depends on the presence of masks and the other event(s) the targets are embedded in. The scenario supports the idea that the AB arises from "biased competition", with the top-down bias being generated by parietal-frontal interactions and the competition taking place between stimulus codes in temporal cortex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Substituted amphetamines such as p-chloroamphetamine and the abused drug methylenedioxymethamphetamine cause selective destruction of serotonin axons in rats, by unknown mechanisms. Since some serotonin neurones also express neuronal nitric oxide synthase, which has been implicated in neurotoxicity, the present study was undertaken to determine whether nitric oxide synthase expressing serotonin neurones are selectively vulnerable to methylenedioxymethamphetamine or p-chloroamphetamine. Using double-labeling immunocytochemistry and double in situ hybridization for nitric oxide synthase and the serotonin transporter, it was confirmed that about two thirds of serotonergic cell bodies in the dorsal raphe nucleus expressed nitric oxide synthase, however few if any serotonin transporter immunoreactive axons in striatum expressed nitric oxide synthase at detectable levels. Methylenedioxymethamphetamine (30 mg/kg) or p-chloroamphetamine (2 x 10 mg/kg) was administered to Sprague-Dawley rats, and 7 days after drug administration there were modest decreases in the levels of serotonin transporter protein in frontal cortex, and striatum using Western blotting, even though axonal loss could be clearly seen by immunostaining. p-Chloroamphetamine or methylenedioxymethamphetamine administration did not alter the level of nitric oxide synthase in striatum or frontal cortex, determined by Western blotting. Analysis of serotonin neuronal cell bodies 7 days after p-chloroamphetamine treatment, revealed a net down-regulation of serotonin transporter mRNA levels, and a profound change in expression of nitric oxide synthase, with 33% of serotonin transporter mRNA positive cells containing nitric oxide synthase mRNA, compared with 65% in control animals. Altogether these results support the hypothesis that serotonin neurones which express nitric oxide synthase are most vulnerable to substituted amphetamine toxicity, supporting the concept that the selective vulnerability of serotonin neurones has a molecular basis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Knowledge about the functional status of the frontal cortex in infancy is limited. This study investigated the effects of polymorphisms in four dopamine system genes on performance in a task developed to assess such functioning, the Freeze-Frame task, at 9 months of age. Polymorphisms in the catechol-O-methyltransferase (COMT) and the dopamine D4 receptor (DRD4) genes are likely to impact directly on the functioning of the frontal cortex, whereas polymorphisms in the dopamine D2 receptor (DRD2) and dopamine transporter (DAT1) genes might influence frontal cortex functioning indirectly via strong frontostriatal connections. A significant effect of the COMT valine158methionine (Val158Met) polymorphism was found. Infants with the Met/Met genotype were significantly less distractible than infants with the Val/Val genotype in Freeze-Frame trials presenting an engaging central stimulus. In addition, there was an interaction with the DAT1 3′ variable number of tandem repeats polymorphism; the COMT effect was present only in infants who did not have two copies of the DAT1 10-repeat allele. These findings indicate that dopaminergic polymorphisms affect selective aspects of attention as early as infancy and further validate the Freeze-Frame task as a frontal cortex task.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Major Depressive Disorder (MDD) has been associated with biased processing and abnormal regulation of negative and positive information, which may result from compromised coordinated activity of prefrontal and subcortical brain regions involved in evaluating emotional information. We tested whether patients with MDD show distributed changes in functional connectivity with a set of independently derived brain networks that have shown high correspondence with different task demands, including stimulus salience and emotional processing. We further explored if connectivity during emotional word processing related to the tendency to engage in positive or negative emotional states. In this study, 25 medication-free MDD patients without current or past comorbidity and matched controls (n=25) performed an emotional word-evaluation task during functional MRI. Using a dual regression approach, individual spatial connectivity maps representing each subject’s connectivity with each standard network were used to evaluate between-group differences and effects of positive and negative emotionality (extraversion and neuroticism, respectively, as measured with the NEO-FFI). Results showed decreased functional connectivity of the medial prefrontal cortex, ventrolateral prefrontal cortex, and ventral striatum with the fronto-opercular salience network in MDD patients compared to controls. In patients, abnormal connectivity was related to extraversion, but not neuroticism. These results confirm the hypothesis of a relative (para)limbic-cortical decoupling that may explain dysregulated affect in MDD. As connectivity of these regions with the salience network was related to extraversion, but not to general depression severity or negative emotionality, dysfunction of this network may be responsible for the failure to sustain engagement in rewarding behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Selective serotonin reuptake inhibitors (SSRIs) are popular medications for anxiety and depression, but their effectiveness, particularly in patients with prominent symptoms of loss of motivation and pleasure, has been questioned. There are few studies of the effect of SSRIs on neural reward mechanisms in humans. Methods We studied 45 healthy participants who were randomly allocated to receive the SSRI citalopram, the noradrenaline reuptake inhibitor reboxetine, or placebo for 7 days in a double-blind, parallel group design. We used functional magnetic resonance imaging to measure the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (sight of moldy strawberries and/or an unpleasant strawberry taste) on the final day of drug treatment. Results Citalopram reduced activation to the chocolate stimuli in the ventral striatum and the ventral medial/orbitofrontal cortex. In contrast, reboxetine did not suppress ventral striatal activity and in fact increased neural responses within medial orbitofrontal cortex to reward. Citalopram also decreased neural responses to the aversive stimuli conditions in key “punishment” areas such as the lateral orbitofrontal cortex. Reboxetine produced a similar, although weaker effect. Conclusions Our findings are the first to show that treatment with SSRIs can diminish the neural processing of both rewarding and aversive stimuli. The ability of SSRIs to decrease neural responses to reward might underlie the questioned efficacy of SSRIs in depressive conditions characterized by decreased motivation and anhedonia and could also account for the experience of emotional blunting described by some patients during SSRI treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated selective impairments in the production of regular and irregular past tense by examining language performance and lesion sites in a sample of twelve stroke patients. A disadvantage in regular past tense production was observed in six patients when phonological complexity was greater for regular than irregular verbs, and in three patients when phonological complexity was closely matched across regularity. These deficits were not consistently related to grammatical difficulties or phonological errors but were consistently related to lesion site. All six patients with a regular past tense disadvantage had damage to the left ventral pars opercularis (in the inferior frontal cortex), an area associated with articulatory sequencing in prior functional imaging studies. In addition, those that maintained a disadvantage for regular verbs when phonological complexity was controlled had damage to the left ventral supramarginal gyrus (in the inferior parietal lobe), an area associated with phonological short-term memory. When these frontal and parietal regions were spared in patients who had damage to subcortical (n = 2) or posterior temporo-parietal regions (n = 3), past tense production was relatively unimpaired for both regular and irregular forms. The remaining (12th) patient was impaired in producing regular past tense but was significantly less accurate when producing irregular past tense. This patient had frontal, parietal, subcortical and posterior temporo-parietal damage, but was distinguished from the other patients by damage to the left anterior temporal cortex, an area associated with semantic processing. We consider how our lesion site and behavioral observations have implications for theoretical accounts of past tense production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies have revealed abnormalities in resting-state functional connectivity in those with major depressive disorder specifically in areas such as the dorsal anterior cingulate, thalamus, amygdala, the pallidostriatum and subgenual cingulate. However, the effect of antidepressant medications on human brain function is less clear and the effect of these drugs on resting-state functional connectivity is unknown. Forty volunteers matched for age and gender with no previous psychiatric history received either citalopram (SSRI; selective serotonergic reuptake inhibitor), reboxetine (SNRI; selective noradrenergic reuptake inhibitor) or placebo for 7 days in a double-blind design. Using resting-state functional magnetic resonance imaging and seed based connectivity analysis we selected the right nucleus accumbens, the right amygdala, the subgenual cingulate and the dorsal medial prefrontal cortex as seed regions. Mood and subjective experience were also measured before and after drug administration using self-report scales. Despite no differences in mood across the three groups, we found reduced connectivity between the amygdala and the ventral medial prefrontal cortex in the citalopram group and the amygdala and the orbitofrontal cortex for the reboxetine group. We also found reduced striatal-orbitofrontal cortex connectivity in the reboxetine group. These data suggest that antidepressant medications can decrease resting-state functional connectivity independent of mood change and in areas known to mediate reward and emotional processing in the brain. We conclude that hypothesis-driven seed based analysis of resting-state fMRI supports the proposition that antidepressant medications might work by normalising the elevated resting-state functional connectivity seen in depressed patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The neuropeptide substance P and its receptor NK1 have been implicated in emotion, anxiety and stress in preclinical studies. However, the role of NK1 receptors in human brain function is less clear and there have been inconsistent reports of the value of NK1 receptor antagonists in the treatment of clinical depression. The present study therefore aimed to investigate effects of NK1 antagonism on the neural processing of emotional information in healthy volunteers. Twenty-four participants were randomized to receive a single dose of aprepitant (125 mg) or placebo. Approximately 4 h later, neural responses during facial expression processing and an emotional counting Stroop word task were assessed using fMRI. Mood and subjective experience were also measured using self-report scales. As expected a single dose of aprepitant did not affect mood and subjective state in the healthy volunteers. However, NK1 antagonism increased responses specifically during the presentation of happy facial expressions in both the rostral anterior cingulate and the right amygdala. In the emotional counting Stroop task the aprepitant group had increased activation in both the medial orbitofrontal cortex and the precuneus cortex to positive vs. neutral words. These results suggest consistent effects of NK1 antagonism on neural responses to positive affective information in two different paradigms. Such findings confirm animal studies which support a role for NK1 receptors in emotion. Such an approach may be useful in understanding the effects of novel drug treatments prior to full-scale clinical trials.