68 resultados para match constraints
Resumo:
Constraints to the introduction of enhanced biosecurity systems are rarely considered in sufficient detail when population medicine specialists initiate new control schemes. The main objective of our research was to investigate and compare the different attitudes constraining improvement in biosecurity for cattle and sheep farmers, practising veterinary surgeons and the auxiliary industries in Great Britain (GB). This study was carried out utilizing farmer focus groups, a questionnaire survey of veterinary practitioners and a telephone survey of auxiliary industry representatives. It appears that farmers and veterinarians have their own relatively clear definitions for biosecurity in relation to some major diseases threatening GB agriculture. Overall, farmers believe that other stakeholders, such as the government, should make a greater contribution towards biosecurity within GB. Conversely, veterinary practitioners saw their clients' ability or willingness to invest in biosecurity measures as a major constraint. Veterinary practitioners also felt that there was need for additional proof of efficacy and/or the potential economic benefits of proposed farm biosecurity practices better demonstrated. Auxiliary industries, in general, were not certain of their role in biosecurity although study participants highlighted zoonoses as part of the issue and offered that most of the constraints operated at farm level. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Constraints to the introduction of enhanced biosecurity systems are rarely considered in sufficient detail when population medicine specialists initiate new control schemes. The main objective of our research was to investigate and compare the different attitudes constraining improvement in biosecurity for cattle and sheep farmers, practising veterinary surgeons and the auxiliary industries in Great Britain (GB). This study was carried out utilizing farmer focus groups, a questionnaire survey of veterinary practitioners and a telephone survey of auxiliary industry representatives. It appears that farmers and veterinarians have their own relatively clear definitions for biosecurity in relation to some major diseases threatening GB agriculture. Overall, farmers believe that other stakeholders, such as the government, should make a greater contribution towards biosecurity within GB. Conversely, veterinary practitioners saw their clients' ability or willingness to invest in biosecurity measures as a major constraint. Veterinary practitioners also felt that there was need for additional proof of efficacy and/or the potential economic benefits of proposed farm biosecurity practices better demonstrated. Auxiliary industries, in general, were not certain of their role in biosecurity although study participants highlighted zoonoses as part of the issue and offered that most of the constraints operated at farm level. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper illustrates how nonlinear programming and simulation tools, which are available in packages such as MATLAB and SIMULINK, can easily be used to solve optimal control problems with state- and/or input-dependent inequality constraints. The method presented is illustrated with a model of a single-link manipulator. The method is suitable to be taught to advanced undergraduate and Master's level students in control engineering.
Resumo:
The combination of model predictive control based on linear models (MPC) with feedback linearization (FL) has attracted interest for a number of years, giving rise to MPC+FL control schemes. An important advantage of such schemes is that feedback linearizable plants can be controlled with a linear predictive controller with a fixed model. Handling input constraints within such schemes is difficult since simple bound contraints on the input become state dependent because of the nonlinear transformation introduced by feedback linearization. This paper introduces a technique for handling input constraints within a real time MPC/FL scheme, where the plant model employed is a class of dynamic neural networks. The technique is based on a simple affine transformation of the feasible area. A simulated case study is presented to illustrate the use and benefits of the technique.
Resumo:
We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-the-parameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.
Resumo:
The problem of the appropriate distribution of forces among the fingers of a four-fingered robot hand is addressed. The finger-object interactions are modelled as point frictional contacts, hence the system is indeterminate and an optimal solution is required for controlling forces acting on an object. A fast and efficient method for computing the grasping and manipulation forces is presented, where computation has been based on using the true model of the nonlinear frictional cone of contact. Results are compared with previously employed methods of linearizing the cone constraints and minimizing the internal forces.
Resumo:
A two-locus match probability is presented that incorporates the effects of within-subpopulation inbreeding (consanguinity) in addition to population subdivision. The usual practice of calculating multi-locus match probabilities as the product of single-locus probabilities assumes independence between loci. There are a number of population genetics phenomena that can violate this assumption: in addition to consanguinity, which increases homozygosity at all loci simultaneously, gametic disequilibrium will introduce dependence into DNA profiles. However, in forensics the latter problem is usually addressed in part by the careful choice of unlinked loci. Hence, as is conventional, we assume gametic equilibrium here, and focus instead on between-locus dependence due to consanguinity. The resulting match probability formulae are an extension of existing methods in the literature, and are shown to be more conservative than these methods in the case of double homozygote matches. For two-locus profiles involving one or more heterozygous genotypes, results are similar to, or smaller than, the existing approaches.
Resumo:
It took the solar polar passage of Ulysses in the early 1990s to establish the global structure of the solar wind speed during solar minimum. However, it remains unclear if the solar wind is composed of two distinct populations of solar wind from different sources (e.g., closed loops which open up to produce the slow solar wind) or if the fast and slow solar wind rely on the superradial expansion of the magnetic field to account for the observed solar wind speed variation. We investigate the solar wind in the inner corona using the Wang-Sheeley-Arge (WSA) coronal model incorporating a new empirical magnetic topology–velocity relationship calibrated for use at 0.1 AU. In this study the empirical solar wind speed relationship was determined by using Helios perihelion observations, along with results from Riley et al. (2003) and Schwadron et al. (2005) as constraints. The new relationship was tested by using it to drive the ENLIL 3-D MHD solar wind model and obtain solar wind parameters at Earth (1.0 AU) and Ulysses (1.4 AU). The improvements in speed, its variability, and the occurrence of high-speed enhancements provide confidence that the new velocity relationship better determines the solar wind speed in the outer corona (0.1 AU). An analysis of this improved velocity field within the WSA model suggests the existence of two distinct mechanisms of the solar wind generation, one for fast and one for slow solar wind, implying that a combination of present theories may be necessary to explain solar wind observations.