50 resultados para marine renewable energy
Resumo:
There are varieties of physical and behavioral factors to determine energy demand load profile. The attainment of the optimum mix of measures and renewable energy system deployment requires a simple method suitable for using at the early design stage. A simple method of formulating load profile (SMLP) for UK domestic buildings has been presented in this paper. Domestic space heating load profile for different types of houses have been produced using thermal dynamic model which has been developed using thermal resistant network method. The daily breakdown energy demand load profile of appliance, domestic hot water and space heating can be predicted using this method. The method can produce daily load profile from individual house to urban community. It is suitable to be used at Renewable energy system strategic design stage.
Resumo:
Trends in China's energy future will have considerable consequences for both China and the global environment. Though China's carbon emissions are low on a per capita basis, China is already ranked the world's second largest producer of carbon, behind only America. China's buildings sector currently accounts for 23% of China's total energy use and is projected to increase to one-third by 2010. Energy policy plays an important role in China's sustainable development. The purpose of this study is to provide a broad overview of energy efficiency issues in the built environment in China. This paper, firstly briefly, reviews the key national policies related to the built environment and demonstrates the government's environmental concern. Secondly, the authors introduce recent energy policies in the built environment. Energy efficiency and renewable energy in the built environment, which are the key issues of the national energy policy, have been reviewed. Discussion of the implementation of energy policy has been carried out.
Resumo:
Wind energy potential in Iberia is assessed for recent–past (1961–2000) and future (2041–2070) climates. For recent–past, a COSMO-CLM simulation driven by ERA-40 is used. COSMO-CLM simulations driven by ECHAM5 following the A1B scenario are used for future projections. A 2 MW rated power wind turbine is selected. Mean potentials, inter-annual variability and irregularity are discussed on annual/seasonal scales and on a grid resolution of 20 km. For detailed regional assessments eight target sites are considered. For recent–past conditions, the highest daily mean potentials are found in winter over northern and eastern Iberia, particularly on high-elevation or coastal regions. In northwestern Iberia, daily potentials frequently reach maximum wind energy output (50 MWh day−1), particularly in winter. Southern Andalucía reveals high potentials throughout the year, whereas the Ebro valley and central-western coast show high potentials in summer. The irregularity in annual potentials is moderate (<15% of mean output), but exacerbated in winter (40%). Climate change projections show significant decreases over most of Iberia (<2 MWh day−1). The strong enhancement of autumn potentials in Southern Andalucía is noteworthy (>2 MWh day−1). The northward displacement of North Atlantic westerly winds (autumn–spring) and the strengthening of easterly flows (summer) are key drivers of future projections.
Resumo:
It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulphur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially for electricity-powered systems, is the most important factor to determine their overall environmental performance. The direct-fired lithium-bromide absorption type consumes more non-renewable energy, and contributes more to the urban heat island effect compared with other options having the same electricity supply. Using Emergy Analysis, designers and clients can make better-informed, environmentally-conscious selections of heating, ventilating and air-conditioning systems.
Resumo:
The paper outlines EU policy on bioenergy, including biofuels, in the context of its policy initiatives to promote renewable energy to combat greenhouse gas emissions and climate change. The EU's Member States are responsible for implementing EU policy: thus, the UK's Renewables Obligation on electricity suppliers and its Renewable Transport Fuel Obligation and road-fuel tax rebates are examined. It is unlikely that EU policy is in conflict with the WTO Agreement on Agriculture or that on Subsidies and Countervailing Measures, but its provisions on environmental sustainability criteria could be problematic.
Resumo:
Fast-growing poplar trees may in future be used as a source of renewable energy for heat, electricity and biofuels such as bioethanol. Water use in Populus x euramericana (clone I214), following long-term exposure to elevated CO2 in the POPFACE (poplar free-air carbon dioxide enrichment) experiment, is quantified here. Stomatal conductance was measured and, during two measurement campaigns made before and after coppicing, whole-tree water use was determined using heat-balance sap-flow gauges, first validated using eddy covariance measurements of latent heat flux. Water use was determined by the balance between leaf-level reductions in stomatal conductance and tree-level stimulations in transpiration. Reductions in stomatal conductance were found that varied between 16 and 39% relative to ambient air. Whole-tree sap flow was increased in plants growing under elevated CO2, on average, by 12 and 23%, respectively, in the first and in the second measurement campaigns. These results suggest that future CO2 concentrations may result in an increase in seasonal water use in fast-growing, short-rotation Populus plantations.
Resumo:
We have developed a model that allows players in the building and construction sector and the energy policy makers on energy strategies to be able to perceive the interest of investors in the kingdom of Bahrain in conducting Building Integrated Photovoltaic (BIPV) or Building integrated wind turbines (BIWT) projects, i.e. a partial sustainable or green buildings. The model allows the calculation of the Sustainable building index (SBI), which ranges from 0.1 (lowest) to 1.0 (highest); the higher figure the more chance for launching BIPV or BIWT. This model was tested in Bahrain and the calculated SBI was found 0.47. This means that an extensive effort must be made through policies on renewable energy, renewable energy education, and incentives to BIPV and BIWT projects, environmental awareness and promotion to clean and sustainable energy for building and construction projects. Our model can be used internationally to create a "Global SBI" database. The Sustainable building and construction initiative (SBCI), United Nation, can take the task for establishing such task using this model.
Resumo:
Two unique large buildings in the Kingdom of Bahrain were selected for make-over to sustainable buildings. These are the Almoayyed Tower (the first sky scraper) and the Bahrain International Circuit, BIC (The best world Formula 1 Circuit). The amount of electricity extracted from using renewable energy resource (solar and wind), integrated to the buildings-has been studied thoroughly. For the first building, the total solar electricity from the PV installed at the roof and the 4 vertical facades was found 3 017 500 kWh annually (3 million kWh), i.e. daily energy of 8219 kWh (enough to Supply electricity for 171 houses, each is rated as 2 kW house-in Europe the standard is 1.2 kW). This means that the annual solar electricity produced will be nearly 3 million kWh. This correspond to annual CO, reduction of 3000 t (assuming each kWh of energy from natural gas lead to emission of 1 kg of CO2). For the second building (BIC) the solar electricity from PV panels installed at the roof top, fixed at tilt angle of 26 degrees facing south, will provide annual solar electricity of is 2.8 x 10(6) kWh. The solar electricity from PV panels installed on the windows (12,000 m(2)) will be 45.3 x 10(6) kWh. This means that the total annual electrical power from PV panels (windows and roofs) will be nearly 12 MW (32 kW per day). The CO2 reduction will be 48,000 t. Under the carbon trading or CDM scheme the revenue (or the reward) would be (sic)480,000 million annually (the reward is (sic)10 per tonnes of CO2). The BIC circuit can have diversified electricity supply, i.e. from solar radiation (PV), from solar heat (CSP) and from wind (wind turbines), assuring its sustainability as well as reducing the CO2 emission.
Resumo:
Building refurbishment is key to reducing the carbon footprint and improving comfort in the built environment. However, quantifying the real benefit of a facade change, which can bring advantages to owners (value), occupants (comfort) and the society (sustainability), is not a simple task. At a building physics level, the changes in kWh per m2 of heating / cooling load can be readily quantified. However, there are many subtle layers of operation and mainte-nance below these headline figures which determine how sustainable a building is in reality, such as for example quality of life factors. This paper considers the range of approached taken by a fa/e refurbishment consortium to assess refurbishment solutions for multi-storey, multi-occupancy buildings and how to critically evaluate them. Each of the applued tools spans one or more of the three building parameters of people, product and process. 'De-cision making' analytical network process and parametric building analysis tools are described and their potential impact on the building refurbishment process evaluated.
Resumo:
Under low latitude conditions, minimization of solar radiation within the urban environment may often be a desirable criterion in urban design. The dominance of the direct component of the global solar irradiance under clear high sun conditions requires that the street solar access must be small. It is well known that the size and proportion of open spaces has a great influence on the urban microclimate This paper is directed towards finding the interaction between urban canyon geometry and incident solar radiation. The effect of building height and street width on the shading of the street surfaces and ground for different orientations have been examined and evaluated. It is aimed to explore the extent to which these parameters affect the temperature in the street. This work is based on air and surface temperature measurements taken in different urban street canyons in EL-Oued City (hot and and climate), Algeria. In general, the results show that there are less air temperature variations compared to the surface temperature which really depends on the street geometry and sky view factor. In other words, there is a big correlation between the street geometry, sky view factor and surface temperatures.
Resumo:
Under low latitude conditions, minimisation of solar irradiance within the urban environment may often be an important criterion in urban design. This can be achieved when the obstruction angle is large (high H/W ratio, H = height, W = width). Solar access to streets can always be decreased by increasing H/W to larger values. It is shown in this paper that the street canyon orientation (and not only the H/W ratio) has a considerable effect on solar shading and urban microclimate. The paper demonstrates through a series of shading simulation and temperature measurements that a number of useful relationships can be developed between the geometry and the microclimate of urban street canyons. These relationships are potentially helpful to assist in the formulation of urban design guidelines governing street dimensions and orientations for use by urban designers.
Resumo:
Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term.
Resumo:
In designing modern office buildings, building spaces are frequently zoned by introducing internal partitioning, which may have a significant influence on the room air environment. This internal partitioning was studied by means of model test, numerical simulation, and statistical analysis as the final stage. In this paper, the results produced from the statistical analysis are summarized and presented.