47 resultados para map-matching


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cellular receptor for the haemagglutinating enteroviruses (HEV), and the protein that mediates haemagglutination, is the membrane complement regulatory protein decay accelerating factor (DAF; CD55). Although primate DAF is highly conserved, significant differences exist to enable cell lines derived from primates to be utilized for the characterization of the DAF binding phenotype of human enteroviruses. Thus, several distinct DAF-binding phenotypes of a selection of HEVs (viz. coxsackievirus A21 and echoviruses 6, 7, 11-13, 29) were identified from binding and infection assays using a panel of primate cells derived from human, orang-utan, African Green monkey and baboon tissues. These studies complement our recent determination of the crystal structure of SCR(34) of human DAF [Williams, P., Chaudhry, Y., Goodfellow, I. G., Billington, J., Powell, R., Spiller, O. B., Evans, D. J. & Lea, S. (2003). J Biol Chem 278, 10691-10696] and have enabled us to better map the regions of DAF with which enteroviruses interact and, in certain cases, predict specific virus-receptor contacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are still major challenges in the area of automatic indexing and retrieval of multimedia content data for very large multimedia content corpora. Current indexing and retrieval applications still use keywords to index multimedia content and those keywords usually do not provide any knowledge about the semantic content of the data. With the increasing amount of multimedia content, it is inefficient to continue with this approach. In this paper, we describe the project DREAM, which addresses such challenges by proposing a new framework for semi-automatic annotation and retrieval of multimedia based on the semantic content. The framework uses the Topic Map Technology, as a tool to model the knowledge automatically extracted from the multimedia content using an Automatic Labelling Engine. We describe how we acquire knowledge from the content and represent this knowledge using the support of NLP to automatically generate Topic Maps. The framework is described in the context of film post-production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach to the automatic generation of efficient Field Programmable Gate Arrays (FPGAs) circuits for the Regular Expression-based (RegEx) Pattern Matching problems is presented. Using a novel design strategy, as proposed, circuits that are highly area-and-time-efficient can be automatically generated for arbitrary sets of regular expressions. This makes the technique suitable for applications that must handle very large sets of patterns at high speed, such as in the network security and intrusion detection application domains. We have combined several existing techniques to optimise our solution for such domains and proposed the way the whole process of dynamic generation of FPGAs for RegEX pattern matching could be automated efficiently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a proposed new approach to the Computer Network Security Intrusion Detection Systems (NIDS) application domain knowledge processing focused on a topic map technology-enabled representation of features of the threat pattern space as well as the knowledge of situated efficacy of alternative candidate algorithms for pattern recognition within the NIDS domain. Thus an integrative knowledge representation framework for virtualisation, data intelligence and learning loop architecting in the NIDS domain is described together with specific aspects of its deployment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we evaluate the Probabilistic Occupancy Map (POM) pedestrian detection algorithm on the PETS 2009 benchmark dataset. POM is a multi-camera generative detection method, which estimates ground plane occupancy from multiple background subtraction views. Occupancy probabilities are iteratively estimated by fitting a synthetic model of the background subtraction to the binary foreground motion. Furthermore, we test the integration of this algorithm into a larger framework designed for understanding human activities in real environments. We demonstrate accurate detection and localization on the PETS dataset, despite suboptimal calibration and foreground motion segmentation input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we introduce two kinds of graphs: the generalized matching networks (GMNs) and the recursive generalized matching networks (RGMNs). The former generalize the hypercube-like networks (HLNs), while the latter include the generalized cubes and the star graphs. We prove that a GMN on a family of k-connected building graphs is -connected. We then prove that a GMN on a family of Hamiltonian-connected building graphs having at least three vertices each is Hamiltonian-connected. Our conclusions generalize some previously known results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the heat, linear Schrodinger and linear KdV equations in the domain l(t) < x < ∞, 0 < t < T, with prescribed initial and boundary conditions and with l(t) a given differentiable function. For the first two equations, we show that the unknown Neumann or Dirichlet boundary value can be computed as the solution of a linear Volterra integral equation with an explicit weakly singular kernel. This integral equation can be derived from the formal Fourier integral representation of the solution. For the linear KdV equation we show that the two unknown boundary values can be computed as the solution of a system of linear Volterra integral equations with explicit weakly singular kernels. The derivation in this case makes crucial use of analyticity and certain invariance properties in the complex spectral plane. The above Volterra equations are shown to admit a unique solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel extension to Kohonen's self-organising map, called the plastic self organising map (PSOM), is presented. PSOM is unlike any other network because it only has one phase of operation. The PSOM does not go through a training cycle before testing, like the SOM does and its variants. Each pattern is thus treated identically for all time. The algorithm uses a graph structure to represent data and can add or remove neurons to learn dynamic nonstationary pattern sets. The network is tested on a real world radar application and an artificial nonstationary problem.