34 resultados para low energy Fe ion beams
Resumo:
NASA's Dynamics Explorer (DE) mission was designed to study the coupling between the Earth's magnetosphere, ionosphere and neutral thermosphere1. One area of major interest is the outflow of ionospheric plasma into the magnetosphere, the scale and significance of which is only now becoming apparent with the advent of mass-resolving, low-energy ion detectors. Here we compare observations of ion flows in the polar magnetosphere, made by the retarding ion mass spectrometer (RIMS)2 on DE1, with those made simultaneously in the topside ionosphere by the ion drift meter (IDM)3 on the lower-altitude DE2 spacecraft. The results show the dayside auroral ionosphere to be a significant and highly persistent source of plasma for the magnetosphere. The upwelling ionospheric ions are spatially dispersed, according to both their energy and mass, by the combined actions of the geomagnetic field and the dawn-to-dusk convection electric field, in an effect analogous to the operation of an ion mass spectrometer.
Resumo:
The retarding ion mass spectrometer on the Dynamics Explorer 1 spacecraft has generated a unique data set which documents, among other things, the occurrence of non-Maxwellian superthermal features in the auroral topside ionosphere distribution functions. In this paper, we provide a representative sampling of the observed features and their spatial morphology as observed at altitudes in the range from a few thousand kilometers to a few earth radii. At lower altitudes, these features appear at auroral latitudes separating regions of polar cap and subauroral light ion polar wind. The most common signature is the appearance of an upgoing energetic tail having conical lobes representing significant ion heat and number flux in all species, including O+. Transverse ion heating below the observation point at several thousand kilometers is clearly associated with O+ outflows. In some events observed, transverse acceleration apparently involves nearly the entire thermal plasma, the distribution function becomes highly anisotropic with T > T, and may actually develop a minimum at zero velocity, i.e., become a torus having as its axis the local magnetic field direction. At higher altitudes, the localized dayside source region appears as a field aligned flow which is dispersed tailward across the polar cap according to parallel velocity by antisunward convective flow, so that upflowing low energy O+ ions appear well within the polar cap region. While this flow can appear beamlike in a given location, the energy dispersion observed implies a very broad energy distribution at the source, extending from a few tenths of an eV to in excess of 50 eV. On the nightside, upgoing ion beams are found to be latitudinally bounded by regions of ion conics whose half angles increase with increasing separation from the beam region, indicating low altitude transverse acceleration in immediate proximity to, and below, the parallel acceleration region. These observations reveal a clear distinction between classical polar wind ion outflow and O+ enhanced superthermal flows, and confirm the importance of low altitude transverse acceleration in ionospheric plasma transport, as suggested by previous observations.
Resumo:
Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown- 6){Cp*Fe(4-C10H8)}] (K1), [K(18-crown-6){Cp*Fe(4-C14H10)}] (K2), [Cp*Fe(4-C10H8)] (1), and [Cp*Fe(4-C14H10)] (2) were synthesized and characterized by NMR, UVvis, and 57Fe Mossbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(4-C10H8)] (1) and [Cp*Fe(4-C14H10)] (2) and reversibly oxidized to the cations [Cp*Fe(6-C10H8)]+ (1+) and [Cp*Fe(6-C14H10)]+ (2+). Reduced orbital charges and spin densities of the naphthalene complexes 1/0/+ and the anthracene derivatives 2/0/+ were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1 and 2 are best represented by low-spin FeII ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin FeI ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin FeII ion coordinated to a ligand radical L. Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.
Resumo:
We study here the injection and transport of ions in the convection-dominated region of the Earths magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001) survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992). The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of _1 keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convectionrelated time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by nonreconnection coupling. At higher energies (_220 keV), we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the tail influence the location and behaviour of the plasma populations in the magnetosphere.
Resumo:
The interpretation of structure in cusp ion dispersions is important for helping to understand the temporal and spatial structure of magnetopause reconnection. Stepped and sawtooth signatures have been shown to be caused by temporal variations in the reconnection rate under the same physical conditions for different satellite trajectories. The present paper shows that even for a single satellite path, a change in the amplitude of any reconnection pulses can alter the observed signature and even turn sawtooth into stepped forms and vice versa. On 20 August 1998, the Defense Meteorological Satellite Program (DMSP) craft F-14 crossed the cusp just to the south of Longyearbyen, returning on the following orbit. The two passes by the DMSP F-14 satellites have very similar trajectories and the open-closed field line boundary (OCB) crossings, as estimated from the SSJ/4 precipitating particle data and Polar UVI images, imply a similarly-shaped polar cap, yet the cusp ion dispersion signatures differ substantially. The cusp crossing at 08:54 UT displays a stepped ion dispersion previously considered to be typical of a meridional pass, whereas the crossing at 10:38 UT is a sawtooth form ion dispersion, previously considered typical of a satellite travelling longitudinally with respect to the OCB. It is shown that this change in dispersed ion signature is likely to be due to a change in the amplitude of the pulses in the reconnection rate, causing the stepped signature. Modelling of the low-energy ion cutoff under different conditions has reproduced the forms of signature observed.
Resumo:
Numerical simulations are presented of the ion distribution functions seen by middle-altitude spacecraft in the low-latitude boundary layer (LLBL) and cusp regions when reconnection is, or has recently been, taking place at the equatorial magnetopause. From the evolution of the distribution function with time elapsed since the field line was opened, both the observed energy/observation-time and pitch-angle/energy dispersions are well reproduced. Distribution functions showing a mixture of magnetosheath and magnetospheric ions, often thought to be a signature of the LLBL, are found on newly opened field lines as a natural consequence of the magnetopause effects on the ions and their flight times. In addition, it is shown that the extent of the source region of the magnetosheath ions that are detected by a satellite is a function of the sensitivity of the ion instrument . If the instrument one-count level is high (and/or solar-wind densities are low), the cusp ion precipitation detected comes from a localised region of the mid-latitude magnetopause (around the magnetic cusp), even though the reconnection takes place at the equatorial magnetopause. However, if the instrument sensitivity is high enough, then ions injected from a large segment of the dayside magnetosphere (in the relevant hemisphere) will be detected in the cusp. Ion precipitation classed as LLBL is shown to arise from the low-latitude magnetopause, irrespective of the instrument sensitivity. Adoption of threshold flux definitions has the same effect as instrument sensitivity in artificially restricting the apparent source region.
Resumo:
We present an analysis of a cusp ion step, observed by the Defense Meteorological Satellite Program (DMSP) F10 spacecraft, between two poleward moving events of enhanced ionospheric electron temperature, observed by the European Incoherent Scatter (EISCAT) radar. From the ions detected by the satellite, the variation of the reconnection rate is computed for assumed distances along the open-closed field line separatrix from the satellite to the X line, do. Comparison with the onset times of the associated ionospheric events allows this distance to be estimated, but with an uncertainty due to the determination of the low-energy cutoff of the ion velocity distribution function, (). Nevertheless, the reconnection site is shown to be on the dayside magnetopause, consistent with the reconnection model of the cusp during southward interplanetary magnetic field (IMF). Analysis of the time series of distribution function at constant energies, (ts), shows that the best estimate of the distance do is 14.52 RE. This is consistent with various magnetopause observations of the signatures of reconnection for southward IMF. The ion precipitation is used to reconstruct the field-parallel part of the Cowley D ion distribution function injected into the open low-latitude boundary layer in the vicinity of the X line. From this reconstruction, the field-aligned component of the magnetosheath flow is found to be only 5565 km s1 near the X line, which means either that the reconnection X line is near the stagnation region at the nose of the magnetosphere, or that it is closely aligned with the magnetosheath flow streamline which is orthogonal to the magnetosheath field, or both. In addition, the sheath Alfvn speed at the X line is found to be 22045 km s1, and the speed with which newly opened field lines are ejected from the X line is 16530 km s1. We show that the inferred magnetic field, plasma density, and temperature of the sheath near the X line are consistent with a near-subsolar reconnection site and confirm that the magnetosheath field makes a large angle (>58) with the X line.
Resumo:
A method for estimating both the Alfvn speed and the field-aligned flow of the magnetosheath at the magnetopause reconnection site is presented. The method employs low-altitude cusp ion observations and requires the identification of a feature in the cusp ion spectra near the low-energy cutoff which will often be present for a low-latitude dayside reconnection site. The appearance of these features in data of limited temporal, energy, and pitch angle resolution is illustrated by using model calculations of cusp ion distribution functions. These are based on the theory of ion acceleration at the dayside magnetopause and allow for the effects on the spectrum of flight times of ions precipitating down newly opened field lines. In addition, the variation of the reconnection rate can be evaluated, and comparison with ground-based observations of the corresponding sequence of transient events allows the field-aligned distance from the ionosphere to the reconnection site to be estimated.
Resumo:
Recent observations from the Dynamics Explorer 1 (DE-1) spacecraft have shown that the dayside auroral zone is an important source of very low-energy superthermal O^+ ions for the polar magnetosphere. When observed at 2000- to 5000-km altitude, the core of the O^+ distribution exhibits transverse heating to energies on the order of 10 eV, significant upward heat flux, and subsonic upward flow at significant flux levels exceeding 10^8 cm^{-2}s^{-1}. The term "upwelling ions" has been adopted to label these flows, which stand out in sharp contrast to the light ion polar wind flows observed in the same altitude range in the polar cap and subauroral magnetosphere. We have chosen a typical upwelling ion event for detailed study, correlating retarding ion mass spectrometer observations of the low-energy plasma with energetic ion observations and local electromagnetic field observations. The upwelling ion signature is colocated with the magnetospheric cleft as marked by precipitating energetic magnetosheath ions. The apparent ionospheric heating is clearly linked with the magnetic field signatures of strong field-aligned currents in the vicinity of the dayside polar cap boundary. Electric field and ion plasma measurements indicate that a very strong and localized convection channel or jet exists coincident with the other signatures of this event. These observations indicate that transverse ion heating to temperatures on the order of 10^5 K in the 2000- to 5000-km ionosphere is an important factor in producing heavy ion outflows into the polar magnetosphere. This result contrasts with recent suggestions that electron heating to temperatures of order 10^4 K is the most important parameter with regard to O^+ outflow.
Resumo:
The transport of ionospheric ions from a source in the polar cleft ionosphere through the polar magnetosphere is investigated using a two-dimensional, kinetic, trajectory-based code. The transport model includes the effects of gravitation, longitudinal magnetic gradient force, convection electric fields, and parallel electric fields. Individual ion trajectories as well as distribution functions and resulting bulk parameters of density, parallel average energy, and parallel flux for a presumed cleft ionosphere source distribution are presented for various conditions to illustrate parametrically the dependences on source energies, convection electric field strengths, ion masses, and parallel electric field strengths. The essential features of the model are consistent with the concept of a cleft-based ion fountain supplying ionospheric ions to the polar magnetosphere, and the resulting plasma distributions and parameters are in general agreement with recent low-energy ion measurements from the DE 1 satellite.
Resumo:
The nuclides 157W and 161Os have been discovered in reactions of 58Ni ion beams with a 106Cd target. The 161Os -decay energy and half-life were 689012 keV and 64060 s. The daughter 157W nuclei -decayed with a half-life of 27540 ms, populating both low-lying -decaying states in 157Ta, which is consistent with a 7/2 ground state in 157W. Fine structure observed in the decay of 161Os places the lowest excited state in 157W with I=9/2 at 31830 keV. The branching ratio of View the MathML source indicates that 161Os also has a 7/2 ground state. Shell-model calculations analysing the effects of monopole shifts and a tensor force on the relative energies of 2f7/2 and 1h9/2 neutron states in N=83 isotones are presented.
Resumo:
With its highly fluctuating ion production matrix-assisted laser desorption/ionization (MALDI) poses many practical challenges for its application in mass spectrometry. Instrument tuning and quantitative ion abundance measurements using ion signal alone depend on a stable ion beam. Liquid MALDI matrices have been shown to be a promising alternative to the commonly used solid matrices. Their application in areas where a stable ion current is essential has been discussed but only limited data have been provided to demonstrate their practical use and advantages in the formation of stable MALDI ion beams. In this article we present experimental data showing high MALDI ion beam stability over more than two orders of magnitude at high analytical sensitivity (low femtomole amount prepared) for quantitative peptide abundance measurements and instrument tuning in a MALDI Q-TOF mass spectrometer. Samples were deposited on an inexpensive conductive hydrophobic surface and shrunk to droplets <10 nL in size. By using a sample droplet <10 nL it was possible to acquire data from a single irradiated spot for roughly 10,000 shots with little variation in ion signal intensity at a laser repetition rate of 5-20 Hz.
Resumo:
This paper identifies the indicators of energy efficiency assessment in residential building in China through a wide literature review. Indicators are derived from three main sources: 1) The existing building assessment methods; 2)The existing Chinese standards and technology codes in building energy efficiency; 3)Academia research. As a result, we proposed an indicator list by refining the indicators in the above sources. Identified indicators are weighted by the group analytic hierarchy process (AHP) method. Group AHP method is implemented following key steps: Step 1: Experienced experts are selected to form a group; Step 2: A survey is implemented to collect the individual judgments on the importance of indicators in the group; Step 3: Members judgments are synthesized to the group judgments; Step 4: Indicators are weighted by AHP on the group judgments; Step 5: Investigation of consistency estimation shows that the consistency of the judgment matrix is accepted. We believe that the weighted indicators in this paper will provide important references to building energy efficiency assessment.
Resumo:
The low-energy electron diffraction (LEED) pattern of the step-kinked Pt{531} surface at 200 K shows energy-dependent cancellation of diffraction spots over unusually large energy ranges, up to 100 eV. This cannot be reproduced theoretically when a flat surface geometry is assumed. A relatively simple model of roughening, however, involving 0.25 ML of vacancies and adatoms leads to very good agreement with the experiment. The cancellation of intensities within a very narrow range of adatom or vacancy coverages is caused by the interference of electrons emerging from different heights but similar local environments. This is a rare example where the energy dependence of integrated LEED spot intensities is dramatically affected by the long-range arrangement of atoms.
Resumo:
The low-temperature reactivity of water (D2O) adsorbed on clean and oxygen pre-covered Cu(1 1 0) was studied using high resolution X-ray photoelectron spectroscopy (HRXPS) and low energy electron diffraction (LEED). On the clean surface partial dissociation to hydroxyl was observed already at 95 K. Upon annealing to 220 K hydrogen bonded water-hydroxyl chains are formed. Upon further annealing water desorbs leaving behind a layer of hydroxyl, most of which desorbs recombinatively eventually. With pre-adsorbed oxygen water reacts to hydroxyl lifting the added-row reconstruction even below 225 K. Upon annealing this adsorbate layer passes through essentially the same stages as without pre-adsorbed oxygen.