30 resultados para lining epithelium
Resumo:
In this study, we used mouse ileal loops to investigate the interaction of enterohemorrhagic Escherichia coli (EHEC) O157:H7 with the mouse intestinal mucosa. With a dose of 10(9) and 3 h incubation, EHEC O157 was detected in the lumen and to a lesser extent associated with the epithelium. Typical attaching and effacing (A/E) lesions were seen, albeit infrequently. While the effector protein Tir was essential for A/E lesion formation, the bacterial type III secretion system adaptor protein TccP was dispensable. These results suggest that A/E lesions on mouse intestinal mucosa can be formed independently of robust actin polymerization.
Resumo:
Escherichia coli O157:H7 is a zoonotic pathogen that can express a type III secretion system (TTSS) considered important for colonization and persistence in ruminants. E. coli O157:H7 strains have been shown to vary markedly in levels of protein secreted using the TTSS and this study has confirmed that a high secretion phenotype is more prevalent among isolates associated with human disease than isolates shed by healthy cattle. The variation in secretion levels is a consequence of heterogeneous expression, being dependent on the proportion of bacteria in a population that are actively engaged in protein secretion. This was demonstrated by indirect immunofluorescence and eGFP fusions that examined the expression of locus of enterocyte effacement (LEE)-encoded factors in individual bacteria. In liquid media, the expression of EspA, tir::egfp, intimin, but not map::egfp were co-ordinated in a subpopulation of bacteria. In contrast to E. coli O157:H7, expression of tir::egfp in EPEC E2348/69 was equivalent in all bacteria although the same fusion exhibited variable expression when transformed into an E. coli O157:H7 background. An E. coli O157:H7 strain deleted for the LEE demonstrated weak but variable expression of tir::egfp indicating that the elements controlling the heterogeneous expression lie outside the LEE. The research also demonstrated the rapid induction of tir::egfp and map::egfp on contact with bovine epithelial cells. This control in E. coli O157:H7 may be required to limit exposure of key surface antigens, EspA, Tir and intimin during colonization of cattle but allow their rapid production on contact with bovine gastrointestinal epithelium at the terminal rectum.
Resumo:
Cholecystitis is one of the most common gastrointestinal diseases. Inflammation induces the activation of proteases that can signal to cells by cleaving protease-activated receptors (PARs) to induce hemostasis, inflammation, pain, and repair. However, the distribution of PARs in the gallbladder is unknown, and their effects on gallbladder function have not been fully investigated. We localized immunoreactive PAR(1) and PAR(2) to the epithelium, muscle, and serosa of mouse gallbladder. mRNA transcripts corresponding to PAR(1) and PAR(2), but not PAR(4), were detected by RT-PCR and sequencing. Addition of thrombin and a PAR(1)-selective activating peptide (TFLLRN-NH(2)) to the serosal surface of mouse gallbladder mounted in an Ussing chamber stimulated an increase in short-circuit current in wild-type but not PAR(1) knockout mice. Similarly, serosally applied trypsin and PAR(2) activating peptide (SLIGRL-NH(2)) increased short-circuit current in wild-type but not PAR(2) knockout mice. Proteases and activating peptides strongly inhibited electrogenic responses to subsequent stimulation with the same agonist, indicating homologous desensitization. Removal of HCO(3)(-) ions from the serosal buffer reduced responses to thrombin and trypsin by >80%. Agonists of PAR(1) and PAR(2) increase intracellular Ca(2+) concentration in isolated and cultured gallbladder epithelial cells. The COX-2 inhibitor meloxicam and an inhibitor of CFTR prevented the stimulatory effect of PAR(1) but not PAR(2). Thus PAR(1) and PAR(2) are expressed in the epithelium of the mouse gallbladder, and serosally applied proteases cause a HCO(3)(-) secretion. The effects of PAR(1) but not PAR(2) depend on generation of prostaglandins and activation of CFTR. These mechanisms may markedly influence fluid and electrolyte secretion of the inflamed gallbladder when multiple proteases are generated.
Resumo:
An in vitro colon extended physiologically based extraction test (CEPBET) which incorporates human gastrointestinal tract (GIT) parameters (including pH and chemistry, solid-to-fluid ratio, mixing and emptying rates) was applied for the first time to study the bioaccessibility of brominated flame retardants (BFRs) from the 3 main GIT compartments (stomach, small intestine and colon) following ingestion of indoor dust. Results revealed the bioaccessibility of γ-HBCD (72%) was less than that for α- and β-isomers (92% and 80% respectively) which may be attributed to the lower aqueous solubility of the γ-isomer (2 μg L−1) compared to the α- and β-isomers (45 and 15 μg L−1 respectively). No significant change in the enantiomeric fractions of HBCDs was observed in any of the studied samples. However, this does not completely exclude the possibility of in vivo enantioselective absorption of HBCDs, as the GIT cell lining and bacterial flora – which may act enantioselectively – are not included in the current CE-PBET model. While TBBP-A was almost completely (94%) bioaccessible, BDE-209 was the least (14%) bioaccessible of the studied BFRs. Bioaccessibility of tri-hepta BDEs ranged from 32–58%. No decrease in the bioaccessibility with increasing level of bromination was observed in the studied PBDEs.
Resumo:
Background: Acquisition of the intestinal microbiota in early life corresponds with the development of the mucosal immune system. Recent work on caesarean-delivered infants revealed that early microbial composition is influenced by birthing method and environment. Furthermore, we have confirmed that early-life environment strongly influences both the adult gut microbiota and development of the gut immune system. Here, we address the impact of limiting microbial exposure after initial colonization on the development of adult gut immunity. Methodology/Principal Findings: Piglets were born in indoor or outdoor rearing units, allowing natural colonization in the immediate period after birth, prior to transfer to high-health status isolators. Strikingly, gut closure and morphological development were strongly affected by isolator-rearing, independent of indoor or outdoor origins of piglets. Isolator-reared animals showed extensive vacuolation and disorganization of the gut epithelium, inferring that normal gut closure requires maturation factors present in maternal milk. Although morphological maturation and gut closure were delayed in isolatorreared animals, these hard-wired events occurred later in development. Type I IFN, IL-22, IL-23 and Th17 pathways were increased in indoor-isolator compared to outdoor-isolator animals during early life, indicating greater immune activation in pigs originating from indoor environments reflecting differences in the early microbiota. This difference was less apparent later in development due to enhanced immune activation and convergence of the microbiota in all isolator-reared animals. This correlated with elevation of Type I IFN pathways in both groups, although T cell pathways were still more affected in indoor-reared animals. Conclusions/Significance: Environmental factors, in particular microbial exposure, influence expression of a large number of immune-related genes. However, the homeostatic effects of microbial colonization in outdoor environments require sustained microbial exposure throughout development. Gut development in high-hygiene environments negatively impacts on normal succession of the gut microbiota and promotes innate immune activation which may impair immune homeostasis.
Resumo:
Prostaglandins (PG) are bioactive lipids derived from the metabolism of membrane polyunsaturated fatty acids (PUFA), and play important roles in a number of biological processes including cell division, immune responses and wound healing. Cyclooxygenase (COX) is the key enzyme in PG synthesis from arachidonic acid. The hypothesis of the present study was that expression of COX-2 in porcine intestine was dependent on the microbial load and the age of piglets. Piglets were obtained from sows raised either on outdoor free-range farms or on indoor commercial farms, and littermates were divided into three treatments: One group of piglets suckled the sow, a second group was put into an isolator and fed a milk formula, and a third group was put into the isolator fed milk formula and injected with broad spectrum antibiotics. Samples were collected from the 75% level of the small intestine at day 5, 28 and 56 of age. Tissue section from four piglets from each of these six treatment groups was analysed by immunofluorescence for COX-2 and type-IV collagen (basement membrane, defining lamina propria (LP)). Image analysis was used to determine the number of positive pixels expressing LP and epithelial COX-2. COX-2 expressing cells were observed in LP and epithelium in all porcine intestinal samples. When analysing images obtained on day 28, injection of antibiotics seemed to reduce the COX-2 expression in intestinal samples of piglets when compared to other treatments (P=0.053). No significant effect of farm, treatments or age of piglets was observed on COX-2 expressing data when analysing all data of images obtained at day 28 and 56. By double-labelling experiments, COX-2 was found not to be expressed on cell co-expressing CD45, CD16, CD163 or CD2, thus indicating that mucosal leukocytes, including dendritic cells, macrophages and NK cells did not express COX-2. Future research should investigate the role of COX-2 expression in the digestive tract in relation to pig health.
Resumo:
Each human body plays host to a microbial population which is both numerically vast (at around 1014 microbial cells) and phenomenally diverse (over 1,000 species). The majority of the microbial species in the gut have not been cultured but the application of culture-independent approaches for high throughput diversity and functionality analysis has allowed characterisation of the diverse microbial phylotypes present in health and disease. Studies in monozygotic twins, showing that these retain highly similar microbiota decades after birth and initial colonisation, are strongly indicative that diversity of the microbiome is host-specific and affected by the genotype. Microbial diversity in the human body is reflected in both richness and evenness. Diversity increases steeply from birth reaching its highest point in early adulthood, before declining in older age. However, in healthy subjects there appears to be a core of microbial phylotypes which remains relatively stable over time. Studies of individuals from diverse geopraphies suggest that clusters of intestinal bacterial groups tend to occur together, constituting ‘enterotypes’. So variation in intestinal microbiota is stratified rather than continuous and there may be a limited number of host/microbial states which respond differently to environmental influences. Exploration of enterotypes and functional groups may provide biomarkers for disease and insights into the potential for new treatments based on manipulation of the microbiome. In health, the microbiota interact with host defences and exist in harmonious homeostasis which can then be disturbed by invading organisms or when ‘carpet bombing’ by antibiotics occurs. In a portion of individuals with infections, the disease will resolve itself without the need for antibiotics and microbial homeostasis with the host’s defences is restored. The administration of probiotics (live microorganisms which when administered in adequate amounts confer a health benefit on the host) represents an artificial way to enhance or stimulate these natural processes. The study of innate mechanisms of antimicrobial defence on the skin, including the production of numerous antimicrobial peptides (AMPs), has shown an important role for skin commensal organisms. These organisms may produce AMPs, and also amplify the innate immune responses to pathogens by activating signalling pathways and processing host produced AMPs. Research continues into how to enhance and manipulate the role of commensal organisms on the skin. The challenges of skin infection (including diseases caused by multiply resistant organisms) and infestations remain considerable. The potential to re-colonise the skin to replace or reduce pathogens, and exploring the relationship between microbiota elsewhere and skin diseases are among a growing list of research targets. Lactobacillus species are among the best known ‘beneficial’ bacterial members of the human microbiota. Of the approximately 120 species known, about 15 are known to occur in the human vagina. These organisms have multiple properties, including the production of lactic acid, hydrogen peroxide and bacteriocins, which render the vagina inhospitable to potential pathogens. Depletion of the of the normal Lactobacillus population and overgrowth of vaginal anaerobes, accompanied by the loss of normal vaginal acidity can lead to bacterial vaginosis – the commonest cause of abnormal vaginal discharge in women. Some vaginal anaerobes are associated with the formation of vaginal biofilms which serve to act as a reservoir of organisms which persists after standard antibiotic therapy of bacterial vaginosis and may help to account for the characteristically high relapse rate in the condition. Administration of Lactobacillus species both vaginally and orally have shown beneficial effects in the treatment of bacterial vaginosis and such treatments have an excellent overall safety record. Candida albicans is a frequent coloniser of human skin and mucosal membranes, and is a normal part of the microbiota in the mouth, gut and vagina. Nevertheless Candida albicans is the most common fungal pathogen worldwide and is a leading cause of serious and often fatal nosocomial infections. What turns this organism from a commensal to a pathogen is a combination of increasing virulence in the organism and predisposing host factors that compromise immunity. There has been considerable research into the use of probiotic Lactobacillus spp. in vaginal candidiasis. Studies in reconstituted human epithelium and monolayer cell cultures have shown that L. rhamnosus GG can protect mucosa from damage caused by Candida albicans, and enhance the immune responses of mucosal surfaces. Such findings offer the promise that the use of such probiotic bacteria could provide new options for antifungal therapy. Studies of changes of the human intestinal microbiota in health and disease are complicated by its size and diversity. The Alimentary Pharmabiotic Centre in Cork (Republic of Ireland) has the mission to ‘mine microbes for mankind’ and its work illustrates the potential benefits of understanding the gut microbiota. Work undertaken at the centre includes: mapping changes in the microbiota with age; studies of the interaction between the microbiota and the gut; potential interactions between the gut microbiota and the central nervous system; the potential for probiotics to act as anti-infectives including through the production of bacteriocins; and the characterisation of interactions between gut microbiota and bile acids which have important roles as signalling molecules and in immunity. The important disease entity where the role of the gut microbiota appears to be central is the Irritable Bowel Syndrome (IBS). IBS patients show evidence of immune activation, impaired gut barrier function and abnormal gut microbiota. Studies with probiotics have shown that these organisms can exert anti-inflammatory effects in inflammatory bowel disease and may strengthen the gut barrier in IBS of the diarrhoea-predominant type. Formal randomised trials of probiotics in IBS show mixed results with limited benefit for some but not all. Studies confirm that administered probiotics can survive and temporarily colonise the gut. They can also stimulate the numbers of other lactic acid bacilli in the gut, and reduce the numbers of pathogens. However consuming live organisms is not the only way to influence gut microbiota. Dietary prebiotics are selectively fermented ingredients that can change the composition and/or activity of the gastrointestinal microbiota in beneficial ways. Dietary components that reach the colon, and are available to influence the microbiota include poorly digestible carbohydrates, such as non-starch polysaccharides, resistant starch, non-digestible oligosaccharides (NDOs) and polyphenols. Mixtures of probiotic and prebiotic ingredients that can selectively stimulate growth or activity of health promoting bacteria have been termed ‘synbiotics’. All of these approaches can influence gut microbial ecology, mainly to increase bifidobacteria and lactobacilli, but metagenomic approaches may reveal wider effects. Characterising how these changes produce physiological benefits may enable broader use of these tactics in health and disease in the future. The current status of probiotic products commercially available worldwide is less than ideal. Prevalent problems include misidentification of ingredient organisms and poor viability of probiotic microorganisms leading to inadequate shelf life. On occasions these problems mean that some commercially available products cannot be considered to meet the definition of a probiotic product. Given the potential benefits of manipulating the human microbiota for beneficial effects, there is a clear need for improved regulation of probiotics. The potential importance of the human microbiota cannot be overstated. ‘We feed our microbes, they talk to us and we benefit. We just have to understand and then exploit this.’ (Willem de Vos).
Resumo:
Trypsin and mast cell tryptase cleave proteinase-activated receptor 2 (PAR2) to induce alterations in contraction of airway smooth muscle that have been implicated in asthma in experimental animals. Although tryptase inhibitors are under development for treatment of asthma, little is known about the localization and function of PAR2 in human airways. We detected PAR2 expression in primary cultures of human airway smooth muscle cells using reverse transcriptase/polymerase chain reaction (RT-PCR) and immunofluorescence. The PAR2 agonists trypsin, tryptase, and an activating peptide (SLIGKV-NH2) stimulated calcium mobilization in these cells. PAR2 agonists strongly desensitized responses to a second challenge of trypsin and SLIGKV-NH2, but not to thrombin, indicating that they activate a receptor distinct from the thrombin receptors. Immunoreactive PAR2 was detected in smooth muscle, epithelium, glands, and endothelium of human bronchi. Trypsin, SLIGKV-NH2, and tryptase stimulated contraction of isolated human bronchi. Contraction was increased by removal of the epithelium and diminished by indomethacin. Thus, PAR2 is expressed by human bronchial smooth muscle where its activation mobilizes intracellular Ca2+ and induces contraction. These results are consistent with the hypothesis that PAR2 agonists, including tryptase, induce bronchoconstriction of human airway by stimulating smooth muscle contraction. PAR2 antagonists may be useful drugs to prevent bronchoconstriction.
Resumo:
Although contraction of human isolated bronchi is mediated mainly by tachykinin NK2 receptors, NK1 receptors, via prostanoid release, contract small-size (approximately 1 mm in diameter) bronchi. Here, we have investigated the presence and biological responses of NK1 receptors in medium-size (2-5 mm in diameter) human isolated bronchi. Specific staining was seen in bronchial sections with an antibody directed against the human NK1 receptor. The selective NK1 receptor agonist, [Sar(9), Met(O2)(11)]SP, contracted about 60% of human isolated bronchial rings. This effect was reduced by two different NK1 receptor antagonists, CP-99,994 and SR 140333. Contraction induced by [Sar(9), Met(O2)(11)]SP was independent of acetylcholine and histamine release and epithelium removal, and was not affected by nitric oxide synthase and cyclooxygenase (COX) inhibition. [Sar(9), Met(O2)(11)]SP increased inositol phosphate (IP) levels, and SR 140333 blocked this increase, in segments of medium- and small-size (approximately 1 mm in diameter) human bronchi. COX inhibition blocked the IP increase induced by [Sar(9), Met(O2)(11)]SP in small-size, but not in medium-size, bronchi. NK1 receptors mediated bronchoconstriction in a large proportion of medium-size human bronchi. Unlike small-size bronchi this effect is independent of prostanoid release, and the results are suggestive of a direct activation of smooth muscle receptors and IP release.
Resumo:
The protease activated receptor-2 (PAR-2) belongs to a family of G-protein-coupled receptors that are activated by proteolysis. Trypsin cleaves PAR-2, exposing an N-terminal tethered ligand (SLIGRL) that activates the receptor. Messenger RNA (mRNA) for PAR-2 was found in guinea pig airway tissue by reverse transcription-polymerase chain reaction, and PAR-2 was found by immunohistochemistry in airway epithelial and smooth-muscle cells. In anesthetized guinea pigs, trypsin and SLIGRL-NH(2) (given intratracheally or intravenously) caused a bronchoconstriction that was inhibited by the combination of tachykinin-NK(1) and -NK(2) receptor antagonists and was potentiated by inhibition of nitric oxide synthase (NOS). Trypsin and SLIGRL-NH(2) relaxed isolated trachea and main bronchi, and contracted intrapulmonary bronchi. Relaxation of main bronchi was abolished or reversed to contraction by removal of epithelium, administration of indomethacin, and NOS inhibition. PAR-1, PAR-3, and PAR-4 were not involved in the bronchomotor action of either trypsin or SLIGRL-NH(2), because ligands of these receptors were inactive either in vitro or in vivo, and because thrombin (a PAR-1 and PAR-3 agonist) did not show cross-desensitization with PAR-2 agonists in vivo. Thus, we have localized PAR-2 to the guinea-pig airways, and have shown that activation of PAR-2 causes multiple motor effects in these airways, including in vivo bronchoconstriction, which is in part mediated by a neural mechanism.
Resumo:
Ethylenediaminetetraacetic acid, ethylenediamine-N,N′-disuccinic acid and ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid are polyaminocarboxylic acids that are able to sequester metal ions. Calcium is implicated in maintenance of intercellular matrix, zonula occludens (tight junctions) and zonula adherens of epithelium and endothelium cells. Corneal epithelium is impervious to many aqueous formulations due to it being lipophilic, whereby transcellular drug transit is resisted, whilst tight junctions restrict access via the paracellular route. Research has shown that integrity of tight junctions breaks down through loss of Ca2+ for endothelial and epithelial cells. This study investigates different Ca2+ sequestering compounds and their effect on corneal permeability of riboflavin at physiological pH. Riboflavin is a topically administered ocular drug applied during UV-induced corneal cross-linking for the treatment of keratoconus.
Resumo:
The permeability of the lung is critical in determining the disposition of inhaled drugs and the respiratory epithelium provides the main physical barrier to drug absorption. The 16HBE14o- human bronchial epithelial cell line has been developed recently as a model of the airway epithelium. In this study, the transport of 10 low molecular weight compounds was measured in the 16HBE14o- cell layers, with apical to basolateral (absorptive) apparent permeability coefficients (P(app)) ranging from 0.4 x 10(-6)cms(-1) for Tyr-D-Arg-Phe-Phe-NH(2) to 25.2x10(-6)cms(-1) for metoprolol. Permeability in 16HBE14o- cells was found to correlate with previously reported P(app) in Caco-2 cells and absorption rates in the isolated perfused rat lung (k(a,lung)) and the rat lung in vivo (k(a,in vivo)). Log linear relationships were established between P(app) in 16HBE14o- cells and P(app) in Caco-2 cells (r(2)=0.82), k(a,lung) (r(2)=0.78) and k(a,in vivo) (r(2)=0.68). The findings suggest that permeability in 16HBE14o- cells may be useful to predict the permeability of compounds in the lung, although no advantage of using the organ-specific cell line 16HBE14o- compared to Caco-2 cells was found in this study.
Resumo:
Overcoming the natural defensive barrier functions of the eye remains one of the greatest challenges of ocular drug delivery. Cornea is a chemical and mechanical barrier preventing the passage of any foreign bodies including drugs into the eye, but the factors limiting penetration of permeants and nanoparticulate drug delivery systems through the cornea are still not fully understood. In this study, we investigate these barrier properties of the cornea using thiolated and PEGylated (750 and 5000 Da) nanoparticles, sodium fluorescein, and two linear polymers (dextran and polyethylene glycol). Experiments used intact bovine cornea in addition to bovine cornea de-epithelialized or tissues pretreated with cyclodextrin. It was shown that corneal epithelium is the major barrier for permeation; pretreatment of the cornea with β-cyclodextrin provides higher permeation of low molecular weight compounds, such as sodium fluorescein, but does not enhance penetration of nanoparticles and larger molecules. Studying penetration of thiolated and PEGylated (750 and 5000 Da) nanoparticles into the de-epithelialized ocular tissue revealed that interactions between corneal surface and thiol groups of nanoparticles were more significant determinants of penetration than particle size (for the sizes used here). PEGylation with polyethylene glycol of a higher molecular weight (5000 Da) allows penetration of nanoparticles into the stroma, which proceeds gradually, after an initial 1 h lag phase.
Resumo:
Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood. Using human colorectal epithelium as an exemplar tissue with a well-defined stem cell population, we analysed samples from 207 healthy participants aged 17-78 years using a combination of techniques (Random Mutation Capture, Next Generation Sequencing and mitochondrial enzyme histochemistry), and show that: 1) non-pathogenic mtDNA mutations are present from early embryogenesis or may be transmitted through the germline, whereas pathogenic mtDNA mutations are detected in the somatic cells, providing evidence for purifying selection in humans, 2) pathogenic mtDNA mutations are present from early adulthood (<20 years of age), at both low levels and as clonal expansions, 3) low level mtDNA mutation frequency does not change significantly with age, suggesting that mtDNA mutation rate does not increase significantly with age, and 4) clonally expanded mtDNA mutations increase dramatically with age. These data confirm that clonal expansion of mtDNA mutations, some of which are generated very early in life, is the major driving force behind the mitochondrial dysfunction associated with ageing of the human colorectal epithelium.
Resumo:
Adult human neural crest-derived stem cells (NCSCs) are of extraordinary high plasticity and promising candidates for the use in regenerative medicine. Here we describe for the first time a novel neural crest-derived stem cell population within the respiratory epithelium of human adult inferior turbinate. In contrast to superior and middle turbinates, high amounts of source material could be isolated from human inferior turbinates. Using minimally-invasive surgery methods isolation is efficient even in older patients. Within their endogenous niche, inferior turbinate stem cells (ITSCs) expressed high levels of nestin, p75(NTR), and S100. Immunoelectron microscopy using anti-p75 antibodies displayed that ITSCs are of glial origin and closely related to nonmyelinating Schwann cells. Cultivated ITSCs were positive for nestin and S100 and the neural crest markers Slug and SOX10. Whole genome microarray analysis showed pronounced differences to human ES cells in respect to pluripotency markers OCT4, SOX2, LIN28, and NANOG, whereas expression of WDR5, KLF4, and c-MYC was nearly similar. ITSCs were able to differentiate into cells with neuro-ectodermal and mesodermal phenotype. Additionally ITSCs are able to survive and perform neural crest typical chain migration in vivo when transplanted into chicken embryos. However ITSCs do not form teratomas in severe combined immunodeficient mice. Finally, we developed a separation strategy based on magnetic cell sorting of p75(NTR) positive ITSCs that formed larger neurospheres and proliferated faster than p75(NTR) negative ITSCs. Taken together our study describes a novel, readily accessible source of multipotent human NCSCs for potential cell-replacement therapy.